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Abstract 

 

        In this research, we study the stability of nonlinear systems of first order 

ordinary differential equations with constant coefficients using Lyapunov 

functions. For that we study the stability of these systems in general, then we give 

some basic concepts about the equilibrium point and types of stability according 

to Lyapunov, in addition to some Lyapunov theorems which help us to analysis 

the stability using Lyapunov Functions. Using this methodology, we can 

determine system behavior without requiring explicit solutions to the systems. We 

apply this methodology to analysis the stability of a drone in three-dimensional 

space (3D-drone) using a nonlinear mathematical model. This model incorporates 

translational motion along the three axes, as well as the rotational angles around 

each axis. we give some examples to illustrate our study.
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Introduction 

 

        Nonlinear ordinary differential equations (𝑁𝐿𝑂𝐷𝐸𝑠) are fundamental to the 

mathematical modeling of many real-world phenomena. These equations naturally 

appear in various scientific and engineering fields, such as physics, mechanical, 

electrical engineering, weather forecasting, population dynamics, economics, and 

many other natural processes. While traditional analytical methods can handle 

some types of 𝑁𝐿𝑂𝐷𝐸𝑠, obtaining explicit solutions for nonlinear systems remains 

a significant challenge. In many cases, solutions can only be expressed as series or 

approximations, necessitating alternative approaches to understand the behavior of 

these systems. The difficulties associated with solving 𝑁𝐿𝑂𝐷𝐸𝑠 have led to the 

development of qualitative analytical methods that aim to study the properties of 

systems without relying on explicit solutions. The true origins of this trend can be 

traced back to the work of the French mathematician "Henri Poincare", whose 

contributions laid the theoretical foundation for the science of nonlinear 

dynamical systems. 

        Although Linear differential equations (𝐿𝑂𝐷𝐸𝑠) developed rapidly during the 

18th century, pinpointing the exact period of emergence and study of 𝑁𝐿𝑂𝐷𝐸𝑠 

remains more complex due their gradual development across different eras, their 

diversity and the difficulty of solving them. 

        Among the most important aspects related to the study of nonlinear systems 

is the concept of stability, a pivotal concept in these systems, especially control 

systems. Stability is based on the system's ability to maintain its behavior near its 

equilibrium point or return to it in the event of minor disturbances. The earliest 

concept of stability arose from the study of the equilibrium of dynamic systems. 

Some of the earliest contributions date bake to 1644 when ''Torricelli'' studied the 

equilibrium of rigid bodies under the influence of gravity, followed by 

fundamental results presented by "Lagrange" in 1788 regarding the stability of 

conservative dynamic systems. 
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        Among the most influential and effective tools for analyzing the stability of 

nonlinear and dynamic systems is "Lyapunov's theory", which is considered one 

of the most prominent tools that revolutionized the analysis of system stability, 

particularly in nonlinear systems. Lyapunov presented our strong mathematical 

approach based on the construction of special functions known as ''Lyapunov 

functions'', which enable the study of the stability of systems without the need to 

directly solve differential equations. They are standard functions used to 

determine the nature of the system's behavior near equilibrium points. This theory 

has become one of the most important pillars in the analysis of nonlinear systems 

and the design of modern control systems, and a starting point for many 

developments in the field of stability and control.         

        There are many papers studied stability of linear and nonlinear systems of 

𝑂𝐷𝐸𝑠 of first order. In 2012, Thnoun et al.  [37] studied the stability of a periodic 

motion for physical application which is leads to differential equations of second 

order (Double and Spherical Pendulum) respectively using the stability of 

equilibrium position given by Lyapunov and Ghetagev's method, which depends 

on principle of energy conservation. Also, he described periodic motion and 

explain the phase plane and state of the stability for double and spherical 

pendulum using (Maple). In 2015, Morgan [18] used the linearization techniques 

and linear differential equation theory to analyze nonlinear 𝑂𝐷𝐸𝑠, he took a 

special way to analyze the solutions of the nonlinear systems of 𝑂𝐷𝐸𝑠. Also, he 

provide stability analysis, phase portraits, and numerical solutions for these 

systems. In 2020, Al-Zenati et al. [33] studied nine cases of solutions stability of 

𝑂𝐷𝐸𝑠 at the critical point zero according to the types of the roots of the equation. 

In 2021, Sivaram [24] presented differential methods to find the solutions of linear 

systems of 𝑂𝐷𝐸𝑠 with constant coefficients and compared the difficulties of each 

method. It was observed that the application of matrix methods are very useful in 

discussing the stability of a dynamical system with constant coefficients. In 2024, 

Al-Guhus [35] studied the stability analysis of dynamic systems using a set of 

complex mathematical and numerical ways to investigate the effect of time step 

size and initial parameters on the accuracy and stability of numerical solutions.  
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         The main aim of this research is to study the stability of nonlinear systems of 

first order 𝑂𝐷𝐸𝑠 with constant coefficients using Lyapunov functions, and apply 

it to the stability analysis of a drone in three-dimensional space. By employing 

this methodology, we can determine system behavior without requiring explicit 

solutions to the systems. 

This research will be organized as the following: 

Chapter 1: Nonlinear Systems of First Order Ordinary Differential Equ-

ations with Constant Coefficients 

        In this chapter, we give important basic concepts about the nonlinear systems 

of first order 𝑂𝐷𝐸𝑠 and some of methods to solve it. 

Chapter 2: Stability of Nonlinear Systems of First Order Ordinary Different-

ial Equations 

        In this chapter, we study the stability of nonlinear systems of 𝑂𝐷𝐸𝑠 of first 

order with constant coefficients. For that, we give the basic concept of stability, 

then analysis the stability of these systems. 

Chapter 3: Using Lyapunov Functions for Studing the Stability of Nonlinear 

Systems of First Order Ordinary Differential Equations  

        In this chapter, we study stability of nonlinear systems of 𝑂𝐷𝐸𝑠 of first order 

at the equilibrium point using Lyapunov functions. All basic concepts of the 

stability in this chapter are in the sense of Lyapunov.  

Chapter 4: Application of Stability Analysis of a 3D-Drone 

        In this study, we use Lyapunov functions for  the stability analysis of a drone 

in three-dimensional space using a nonlinear mathematical model.  
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Nonlinear Systems of First Order Ordinary Differential Equations 

with Constant Coefficients 

 

1.1 Introduction 

        The nonlinear systems of differential equations have a fundamental place in 

the study of applied mathematics, dynamical systems, complex geometric 

phenomena and natural phenomena. They represent a mathematical model for 

many application such as physics, engineering, and the life sciences.  

        The first order ordinary differential equation is an equation that relates 

between unknown function 𝑥(𝑡) of independent variable 𝑡 and its first derivative 

𝑥̇(𝑡). It is written in the form: 

𝑥̇(𝑡) = 𝑓(𝑥, 𝑡). 

         A system of ordinary differential equations is a system consisting of a set of 

equations, each equation consisting unknown function and its derivatives in one 

variable. A nonlinear first order ordinary differential equation is an equation 

containing a first order derivative of the dependent variable only with respect to 

the independent variable, it is written on the following form:  

𝑓(𝑡, 𝑥, 𝑥̇) = 0, 𝑥 = 𝑥(𝑡), 

where 𝑡 is the independent variable, 𝑥(𝑡) is the dependent variable, 𝑥̇ =
𝑑𝑥

𝑑𝑡
 is the 

first derivative, and 𝑓 is a nonlinear function. An ordinary differential equation is 

called nonlinear if it satisfies one of the following conditions:  

i.The appearance of 𝑥 or 𝑥̇ raised to a power other than integer one. For example: 

𝑥2, √𝑥, 𝑥3 .  

ii. The appearance of 𝑥 or 𝑥̇ inside a nonlinear function, such as: 𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠(𝑥̇),

𝐼𝑛(𝑥), 𝑒𝑥 , … . For example: 𝑥̇ + 𝑠𝑖𝑛(𝑥) = 𝑡. 

iii.  The existence of a multiplication between 𝑥 and𝑥̇. For example: 𝑥̇𝑥 = 𝑡. 
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        In this chapter, we give some definitions and basic concepts about the 

nonlinear system of ordinary differential equation with constant coefficients. 

Throughout this chapter, we refer to the ordinary differential equation by the 

symbol 𝑂𝐷𝐸, the nonlinear ordinary differential equation by the symbol 𝑁𝐿𝑂𝐷𝐸 

and the nonlinear first order ordinary differential equation by 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸.  

1.2  Basic Definitions  

        It this section, we give some basic definitions related by the nonlinear system 

of 𝑂𝐷𝐸𝑆 . 

1.2.1  The Order of the System of 𝑶𝑫𝑬𝒔 [36] 

      It is the highest derivative that appears in all equations in the system. For 

example the following system:  

𝑥1̇ = 2𝑥1 + 𝑥1𝑥, 

𝑥2̇ = 3𝑥2 + (𝑥1)2, 

is of the first order, but the following system:  

𝑥1̇ − 2𝑥2 + 𝑠𝑖𝑛(𝑥1) = 0, 

𝑥2⃛ + 𝑥1 + 𝑥1𝑥2 = 0, 

is of the third order.  

1.2.2   The Degree of the System of 𝑶𝑫𝑬𝒔 [36] 

        It is the exponent of the highest derivatives which appears in the equations of 

that system. For example, the following system  

𝑥1̇ = 3(𝑥2)2 + 𝑐𝑜𝑠(𝑥1), 

𝑥2̇ = 2𝑥2 + (𝑥1𝑥2)2, 

is of the first degree. But the following system:  

      (𝑥1̇)3 = 5𝑥2 + 𝑥1, 
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𝑥2̇ = 2𝑥1 + 𝑥1𝑥2, 

is of the third degree. 

1.2.3   The Nonlinear System of 𝑶𝑫𝑬𝒔 [3] 

         The system of 𝑂𝐷𝐸𝑠 is called nonlinear if at least one of its equations is 

nonlinear. For example, the following system is nonlinear:  

𝑥1̇ + 𝑥1𝑥2 − 𝑥1
2 = 0,  

  (𝑥2̈)2 + 𝑠𝑖𝑛(𝑥2) + 2𝑥1 = 0.  

        The system of 𝑂𝐷𝐸𝑠 is called linear if every equation in it is a linear. In other 

words, if it satisfies the following: 

i.  The dependent variable and all its derivatives are of the first degree.  

ii.The dependent variable and its derivatives are not multiplied by each other.  

        For example the following system:  

3𝑥1 ̈ + 4𝑥1 = 0, 

𝑥2̇ + 5𝑥1 − 7𝑥2 = 0 

is a linear system. Note that, the last two systems in examples are with constant 

coefficients.  

1.2.4 The Homogeneous and Nonhomogeneous System [20] 

        Let us consider the following 𝑁𝐿𝑂𝐷𝐸: 

𝑎0(𝑡)(𝑦(𝑛))𝑚0 + 𝑎1(𝑡)(𝑦(𝑛−1))𝑚1 + ⋯ + 𝑎𝑛−1(𝑡)(𝑦̇)𝑚𝑛−1 + 𝑎𝑛(𝑡)(𝑦)𝑚𝑛 = 𝑓(𝑡), 

(1.2.1) 

where 𝑎0(𝑡), 𝑎1(𝑡), … , 𝑎𝑛(𝑡) are constant coefficients such that 𝑎0(𝑡) ≠ 0, or functions 

in a variable 𝑡, 𝑓(𝑡) is known function defined in 𝑡, 𝑎0(𝑡) ≠ 0, and 𝑚0,  𝑚1, … , 𝑚𝑛 

are integers more than 1. The equation (1.2.1) is called a homogeneous 𝐿𝑂𝐷𝐸 if 

𝑓(𝑡) = 0 and every term in the equation contains the independent variable 𝑡. If 

𝑓(𝑡) ≠ 0, then the equation (1.2.1) is called a nonhomogeneous. Hence the system 
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is homogeneous if every equation in it is homogeneous, otherwise the system is 

nonhomogeneous. For example, the following system: 

(𝑥1̇)3 + 5𝑥2 + 𝑥1 = 0, 

 𝑥2̇ + 2𝑥1 + 𝑥1𝑥2 = 0,   

     is homogeneous, but the following system: 

    𝑥1̇ + 2𝑥1 + 𝑠𝑖𝑛 (𝑥2) = 0,  

𝑥2̇ + 𝑥2
2 = 𝑒𝑥1 ,   

is nonhomogeneous. 

1.2.5 The Initial Conditions and Boundary Conditions [14] 

First: Initial Conditions  

        By 𝑂𝐷𝐸𝑠, we can describe many natural and geometric phenomena.        

Suppose 𝑓(𝑡, 𝑥, 𝑥̇, … 𝑥(𝑛)) = 0 is an 𝑛𝑡ℎ − 𝑂𝐷𝐸.  This equation usually has general 

solution contains 𝑛-arbitrary constants on an open interval 𝐼 containing 𝑥 = 𝑥0. to 

determine the particular solution from the general solution, there must give 𝑛 

initial conditions at the initial moment 𝑥 = 𝑥0 : 𝑥(𝑡0), 𝑥̇(𝑡0), 𝑥̈(𝑡0), … , 𝑥(𝑛−1)(𝑡0). 

        If we have system of 𝑛 of 1𝑡ℎ − 𝑁𝐿𝑂𝐷𝐸𝑠 and dependent variables: 

𝑥1(𝑡), 𝑥2(𝑡) … 𝑥𝑛(𝑡), then we need one initial condition for each dependent 

variable: 𝑥1(0), 𝑥2(0) … 𝑥𝑛(0). So each equation in the system has an associated 

initial value; this is called the unique solution. Note that, the system of 𝑛 of 1𝑡ℎ −

𝑁𝐿𝑂𝐷𝐸𝑠 with initial conditions is called initial value problem (IVP). 

Second: Boundary Conditions [19] 

        In many practical applications, solving  𝑂𝐷𝐸𝑠 does not specify the solution 

requirements at singular point in time as an initial condition. Thus, instead of 

determining the value of function 𝑥(𝑡) and its derivatives at single value of 𝑡 such 

as 𝑡0 , conditions are imposed at different values of 𝑡, such as 𝑡 = 𝑎 and 𝑡 = 𝑏. 
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1.2.6  The General Solution and Particular Solution [22] 

      The general solution for a system of 𝑂𝐷𝐸𝑠 is the solution that contains a 

number of arbitrary constants equal to the order of the system. It represents all 

possible solutions. For example, a system of 1𝑡ℎ − 𝑁𝐿𝑂𝐷𝐸𝑠 contains only one 

arbitrary constant. But a particular solution for a system of 𝑂𝐷𝐸𝑠 is the solution 

obtained from the general solution after substituting specific numerical values for 

the arbitrary constants (initial conditions or boundary conditions). Sometimes, no 

solution may be obtained from the general solution, in this case, the solution is 

called the ''singular solution'' [10], it is a feature characterizes the  system of 

𝑁𝐿𝑂𝐷𝐸𝑠. A ''singular solution is one that cannot be obtained under any 

circumstances from the general solution. 

1.3 The System of 𝟏𝒔𝒕 − 𝑵𝑳𝑶𝑫𝑬𝒔 with Constant Coefficients 

1.3.1 Definition (The System of 𝟏𝒔𝒕 − 𝑵𝑳𝑶𝑫𝑬𝒔 with Constant coefficients)[25] 

        The system of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠 with Constant coefficients can be written as 

the following:  

𝑑𝑥𝑖

𝑑𝑡
= ∑ 𝑓𝑖(𝑥1, 𝑥2 … 𝑥𝑛)𝑛

𝑖=1 , 𝑖 = 1,2,3, … 𝑛 ,                             (1.3.1) 

where 𝑥𝑖(t) are dependent variables, 𝑡 is independent variable and 𝑓𝑖 are nonlinear 

functions (may contains 𝑥1
3, 𝑥1𝑥2, 𝑠𝑖𝑛(𝑥) , … ). Using the vector form, we can 

rewrite the system (1.3.1) as the following:  

𝑥̇ = 𝐹(𝑥), 𝑥̇(𝑡) = (

𝑥1̇(𝑡)
𝑥2̇(𝑡)

⋮
𝑥𝑛̇(𝑡)

) , 𝐹(𝑥) = (

𝑓1(𝑥1, 𝑥2 … 𝑥𝑛)

𝑓2(𝑥1, 𝑥2 … 𝑥𝑛)
⋮

𝑓𝑛(𝑥1, 𝑥2 … 𝑥𝑛)

).           (1.3.2) 

      A system of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠 with constant coefficients is a system which 

consists of a set of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠 such that the coefficients are constants do not 

dependent on the time 𝑡.  
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1.3.2 The Autonomous and Non-Autonomous System [31]  

        In an autonomous system there is a set of 1𝑠𝑡 − 𝑂𝐷𝐸𝑠 in which the 

independent variable does not appear explicitly, these equations are called 

autonomous equations,  it is describes only the dependent variables. It is on the 

form (1.3.2), where 𝑡 is independent variable and 𝑥 is dependent variable. But a 

non-autonomous system is a system that every equation in it dependents explicitly 

on the independent variable, it is on the following form:  

𝑥̇ = 𝑓(𝑥, 𝑡).  

        For example, the system: 

𝑥1̇ = −𝑥2 + 𝑥1
3,  

𝑥2̇ = 𝑥1 + 𝑥2
2,  

is autonomous nonlinear system. But the system: 

    𝑥1̇ = −𝑥2 + 𝑥1
3 + 𝑠𝑖𝑛 (𝑡),  

  𝑥2̇ = 𝑥1 + 𝑥2
2 + 𝑒−𝑡,  

is non-autonomous nonlinear system. 

        The autonomous system widely used in stability, because it allows for the 

analysis of equilibrium points using Lyapunov functions, which we will discuss in 

the chapter 3.  

1.3.3 Solving the Systems of 𝟏𝒔𝒕 − 𝑵𝑳𝑶𝑫𝑬𝒔 with Constant Coefficients[23] 

        In the following, we give a method to solve the system of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠, it 

is ''separate variables''. This method is effective for solving systems whose 

equations can be clearly separated. We will explain this method below.  

Separate Variables Method [12] 

         Suppose we have the following system of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠: 

𝑥1̇ = 𝑓(𝑥1),                                            (1.3.3)                       
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𝑥2̇ = 𝑔(𝑥2).                                            (1.3.4) 

        To solve this system using separate variables method, we do the following 

steps:  

i. We find the relation between 𝑥1̇ and 𝑥2̇ by dividing the equations (1.3.3) and 

(1.3.4), as follows: 

𝑥2̇

𝑥1̇

=
𝑔(𝑥2)

𝑓(𝑥1)
 .  

ii. Separate the variables as follows: 

𝑀(𝑥2)𝑥2̇ = 𝑁(𝑥1)𝑥1̇,                                   (1.3.5)                              

where 𝑀(𝑥2) is a function of the variable 𝑥2 only, and 𝑁(𝑥1) is a function of the 

variable 𝑥1 only. 

iii. Integrating the equation (1.3.5). 

iv. Find relation between 𝑥1 and 𝑥2 . 

v. Find the solutions in terms of 𝑡 if possible, by referring to the givensystem. 

Example 1.3.3  

        We can use the separate variables method to solve the following nonlinear 

system: 

𝑥1̇ = 𝑥1𝑥2,    𝑥2̇ = 𝑥2
2 ,  

as the following: 

i.                                  
𝑥2̇

𝑥1̇

=
𝑥2

2

𝑥1𝑥2
=

𝑥2

𝑥1
 .   

ii.Separate the variables: 𝑥2̇𝑥2 = 𝑥1̇𝑥1 .         

iii.                                           ∫ 𝑥2𝑥2̇ = ∫ 𝑥1 𝑥1̇ ,      

𝑥2
2

2
=

𝑥1
2

2
+ 𝑐 , 

iv. The general solution is 𝑥2
2 − 𝑥1

2 = 𝑐. 
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Example 1.3.4  

        We can use the separate variables method to sole the following nonlinear 

system: 

𝑥1̇ = 𝑥1(1 − 𝑥2
2), 

 𝑥2̇ = 𝑥2𝑥1
2 ,    

as the following: 

i.                                  
𝑥2̇

𝑥1̇

=
𝑥2𝑥1

2

𝑥1(1−𝑥2
2)

=
𝑥2𝑥1

1−𝑥2
2 

 .    

ii. Separate the variables 

                     𝑥2𝑥1𝑥1̇ = (1 − 𝑥2
2)𝑥2̇,     

𝑥1𝑥1̇ =
1 − 𝑥2

2

𝑥2
𝑥2̇,   

iii.                                                ∫ 𝑥1𝑥1̇ = ∫
1−𝑥2

2

𝑥2
𝑥2̇ , 

                   
𝑥1

2

2
= 𝑙𝑛|𝑥2| −

𝑥2
2

2
+ 𝑐 , 

iv. The general solution is: 

                   
𝑥1

2

2
+

𝑥2
2

2
− 𝑙𝑛|𝑥2| = 𝑐.   

Remark 1.3.1  

        One of the most important characteristics of nonlinear systems is the inability 

to use the superposition principle, that is, if we obtain two or more than two 

solutions for the nonlinear system, the sum of these solutions is not a solution for 

this system [19].  
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Stability of Nonlinear Systems of First Order Ordinary 

Differential Equations 

 

        Stability is of great importance in many fields such as understating the 

behavior of dynamical systems, ensuring the stability of physical and engineering 

systems, and mathematical modeling. The importance of stability in 𝑂𝐷𝐸𝑠 is 

complemented by the ability to predict the behavior of the solution, as stability 

determines whether the solution are close to each other over time or whether they 

are moving apart with slight changes.  

2.1   The Equilibrium Point [26] 

        It is a state of the system space that does not change over time unless an 

external forces acting on the system are zero. That is, the system stop moving at 

this point, 𝑥̇ = 𝑓(𝑥) = 0.  A nonlinear system has more than one equilibrium 

point. In we have a system 𝑥̇ = 𝑓(𝑥), then the state of the equilibrium point if 

𝑥∗ = 𝑥(0), than is 𝑓(𝑥∗) = 0 for all 𝑡 ≥ 0. 

        We are interested in studing equilibrium points in stability because 

equilibrium points represent the state f the system, whether it is stable or unstable, 

and also determine the behavior of the system. Most systems do not remain in a 

state of motion but tend to seek equilibrium. Equilibrium points contribute to 

simplifying the analysis of nonlinear systems because the nonlinear system is very 

complex. By equilibrium, we can generalize aircraft control systems to determine 

whether the airplane will return to its straight course after small disturbances or 

lose control and go off course. Equilibrium points are the locations where the 

system may stabilize [8]. 
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2.2   Stability  

2.2.1   Definition of stability [1] 

        In mathematics, stability is defined as a state of systems. In other words, it is 

a mathematics property usually mentioned in connection with the solution of a 

differential equation, where it is said that the solutions of a differential equation 

around the equilibrium point have either stable or behavior over time. 

2.2.2   Types of Stability in Terms of Domain [16] 

        We can describe the type of stability in terms of domain into two types, they 

are:  

i.Local Stability  

        When the stability property related to a specific mathematical domain(that is, 

the solution remains close to the equilibrium point only ) then the beginning is 

close to the equilibrium point this, the stability is local.  

Example 2.2.1  

        If we throw a ball into a small, deep container and move it a little, it will roll 

to the bottom or stay close to it. This represents local stability.   

ii. Global Stability  

      In this type, the stability property is not related to a specific mathematical 

domain, which means that the solution tends to words the equilibrium, point no 

matter how close or far its equilibrium point. 

Example 2.2.2  

       If we place a ball at any point on the surface of a large, deep valley or on a 

mountain that slopes down from all sides, whether this point is far from or close to 

the point of equilibrium, then this ball will roll towards the bottom, and this 

represents global stability.  
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2.2.3 Types of Stability in Terms of Temporal behavior [16] 

i. Simple Stability: It is when the solution remains close to the equilibrium 

point, but does not necessarily return to it.   

ii. Exponential Stability: The solution in this type not only remains close, 

but approaches the equilibrium point at an exponential speed.   

iii. Instability: In this type, any slight disturbance causes the solution to more 

away from  equilibrium point.   

iv.       Asymptotically Stability: In this type, the solution is close equilibrium 

point and gradually returns to it over time. 

2.3 Methods of Finding Equilibrium Point [7] 

        In  a system of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠 , we can find the equilibrium points by means 

of solutions that make the time rate of change of all the system's variables equal to 

zero. Since the equilibrium points are the values of x that make   𝑥̇ = 𝑓(𝑥) = 0, 

then the only basic and unique method to obtain the equilibrium points is the 

algebraic method. It is an easy method for simple systems, but it requires complex 

numerical or analytical methods for more complex systems.  

        A nonlinear system often has more than one equilibrium point, as illustrated 

by the following examples.   

Example 2.3.1  

        We can find equilibrium points for the following nonlinear system:  

𝑥1̇ = 𝑥1 − 𝑥1
2 − 𝑥1𝑥2,                                   (2.3.1) 

𝑥2̇ = 3𝑥2 − 𝑥1𝑥2 − 2𝑥2
2 .                               (2.3.2) 

        From equation (2.3.1) and (2.3.2) we get: 

𝑥1̇ = 𝑥1(1 − 𝑥1 − 𝑥2),                   (2.3.3)     

𝑥2̇ = 𝑥2(3 − 𝑥1 − 2𝑥2).                                 (2.3.4) 

The equilibrium point must satisfies that 𝑥1̇ = 0 and 𝑥2̇ = 0, so from 

equations (2.3.3) and (2.3.4) we get:  

𝑥1(1 − 𝑥1 − 𝑥2) = 0, 
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𝑥2(3 − 𝑥1 − 2𝑥2) = 0. 

        From the last two equations: 

• If  𝑥1 = 0 and 𝑥2 = 0, then the equilibrium point (𝑥1, 𝑥2 ) = (0, 0). 

• If 𝑥1 = 0 and 3 − 𝑥1 − 2𝑥2 = 0, we get 3 − 0 − 2𝑥2 = 0, so  𝑥2 = 3/2 , 

then the equilibrium point (𝑥1, 𝑥2 ) = (0, 3/2).  

• If 1 − 𝑥1 − 𝑥2 = 0 and 𝑥2 = 0, we get 1 − 𝑥1 − 0 = 0, so 𝑥1 = 1, then 

the equilibrium point (𝑥1, 𝑥2 ) = (1, 0). 

• If 

1 − 𝑥1 − 𝑥2 = 0,                                          (2.3.5) 

3 − 𝑥1 − 2𝑥2 = 0,                                        (2.3.6) 

from equation (2.3.5), we get, 𝑥1 = 1 − 𝑥2 . We substitute by 𝑥1  into equation 

(2.3.6) to get 𝑥2, as the following:  

3 − (1 − 𝑥2) − 2𝑥2 = 0,  

hence 𝑥2 = 2, substitute by 𝑥2 = 2  into 𝑥1 = 1 − 𝑥2 , that is 𝑥1 = 1 − 2 =

−1, then the equilibrium point is (𝑥1, 𝑥2 ) = (−1, 2).  

        From the above, we get four equilibrium points for the given system, they 

are: (0, 0), (0, 3/2), (1, 0), (−1, 2).   

Example 2.3.2  

        We can find equilibrium points for the following nonlinear system:  

𝑥1̇ = 𝑥1 + 𝑥2,                                         (2.3.7) 

𝑥2̇ = 𝑥1𝑥2 .                                           (2.3.8) 

        The equilibrium point must satisfies that 𝑥1̇ = 0 and 𝑥2̇ = 0, so from 

equations (2.3.7) and (2.3.8) we get:  

𝑥1 + 𝑥2 = 0,                                          (2.3.9) 

𝑥1𝑥2 = 0.                                          (2.3.10) 
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        By solving the equations (2.3.9) and (2.3.10), we get 𝑥1 = 0 and 𝑥2 = 0, that 

is the equilibrium point is (𝑥1, 𝑥2 ) = (0, 0).   

2.4 Types of the Equilibrium Point [29] 

i.If the solution are close to the equilibrium point and remain close to it over 

time, then we say that the equilibrium point is stable. 

Example 2.4.1  

        The point to which the ball returns if we move it a little inside a concave 

container and it returns to the same position, we say that it is a stable point.  

ii.If the solutions are close to the equilibrium point and more away from it over 

time, then we say that the equilibrium point is an unstable.  

Example 2.4.2  

        If a ball is at a point at the top of a mountain, and is moved slightly then it 

will roll away from its position, so the equilibrium point is an unstable point.  

iii. If the solution are close to the equilibrium point and do not merely remain 

close to it over time, but they return to it completely, then we say that the 

equilibrium point is an asymptotically stable.  

Example 2.4.3  

        If a ball moves inside a container and is then slightly displaced inside it, it 

will move inside the bottom and over time it will stop completely at the bottom, 

thus are say that the equilibrium point is an asymptotically stable.  

iv.If the solution are close to the equilibrium point, such that they are stable on 

one side, and moving away from the other side over time, then in this case 

we say that the equilibrium point is a semi stable.  
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Example 2.4.4  

         If a ball is moved on an inclined surface from one side, then it will roll to 

words the bottom, and if it is moved from the other side it will move away or falls. 

In this case we say that the equilibrium point is a semi stable.  

          The following figure shows types of the equilibrium point: 

 

 

 

 

 

 

Figure 2.1 [16] Types of Equilibrium Point 

Equilibrium points are of great importance in stability analysis across many 

engineering and scientific fields, as they primarily aim to understand the behavior 

of systems and how changes and disturbances affect them. One of the main 

reasons we study equilibrium points is to determine whether systems are in a static 

or stable state and to predict their behavior. In other words, if a system deviates 

slightly from its equilibrium point after a minor disturbance, will it return to it in a 

stable state or move further away, becoming unstable? Most stability analyses rely 

on the system's behavior near equilibrium points, as these points define the zones 

of stability and instability [2]. 

2.5 Methods for Analyzing the Stability of Equilibrium Points 

        We can decide  whether equilibrium points are stable, unstable, or 

continentally stable using the following method. 

2.5.1 Jacobian and the Eigenvalues Method (Linearization) [7] 

        The Jacobian method is the direct application of indirect Lyapunov 

method, because it relies on the linearity of the system around the equilibrium 
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point and the judgment of stability, this is done through the eigenvalues of 

Jacobian matrix. In the following, we explain this method. 

    Let us consider the following nonlinear two-dimensional system: 

              
𝑥1̇ = 𝑓1(𝑥1, 𝑥2),
𝑥2̇ = 𝑓2(𝑥1, 𝑥2)

}                               (2.5.1)                           

where 𝑥1, 𝑥2 are functions of independent variables. Then Jacobian matrix 

𝐽(𝑥1, 𝑥2) is defined as follows:  

𝐽(𝑥1, 𝑥2) = (

𝑑𝑓1

𝑑𝑥1

𝑑𝑓1

𝑑𝑥2

𝑑𝑓2

𝑑𝑥1

𝑑𝑓2

𝑑𝑥2

).                                    (2.5.2) 

        We can determine the type of stability of the equilibrium points for the above 

system using the eigenvalues of Jacobian matrix as follows: 

i. Find the equilibrium points (see Section (2.3)). 

ii. Determine the Jacobian matrix 𝐽(𝑥1, 𝑥2). 

iii. Substitute the equilibrium points in 𝐽(𝑥1, 𝑥2) to obtain a new matrix 𝐽∗. 

iv. Find the eigenvalues 𝜆1 and 𝜆2 of 𝐽∗ by solving the following 

characteristic equation: 

𝑑𝑒𝑡(𝐽∗ − 𝜆𝐼) = 0,                                      (2,5,3) 

where 𝑑𝑒𝑡 denotes to the determinant of the matrix, and 𝐼 is the identity matrix of 

size 2 × 2: 

𝐼 = (
1 0
0 1

). 

v. We can decide if the equilibrium points are stable or unstable or asymptot-

ically stable, through the eigenvalues we obtain, as follows: 
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1) If 𝜆1 and 𝜆2are negative real numbers, then the shape of the equilibrium 

point is a stable node, and the type of stability of the equilibrium point is 

asymptotically stable, as shown in the following figure: 

 

2) If 𝜆1 and 𝜆2are two positive real numbers, then the shape of the 

equilibrium point is an unstable node and the type of stability of the 

equilibrium point is unstable, as shown in the following figure: 

 

 

 

 

 

3) If 𝜆1 and 𝜆2are two numbers, one positive and the other negative, then the 

shape of the equilibrium point is a saddle point and the type of stability of the 

equilibrium point is unstable. 

 

        Figure 2.2 [19] Stable Node 

Figure 2.3 [19] Unstable Node 



22 
 

 

 

 

 

 

 

4) If 𝜆1 and 𝜆2are complex numbers, then the shape of the equilibrium point is a 

stable focus, and the type of stability of the equilibrium point is asymptotic 

stability. 

 

 

  

 

 

5) If 𝜆1 and 𝜆2are complex numbers (𝑎 ± 𝑖𝑏, 𝑎 > 0), then the shape of the 

equilibrium point is unstable focus, and the type of stability of the equilibrium 

point is unstable.  

 

 

 

 

Figure 2.4 [19] Saddle Point 

Figure 2.5 [19] Stable Focus 

Figure 2.6 [19] Unstable Focus 
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6)  If 𝜆1 and 𝜆2are complex numbers, then the shape of the equilibrium point is 

centre point, and the type of stability of the equilibrium point is stable. 

 

 

 

 

 

7)  If 𝜆1 and 𝜆2 are two positive real numbers such that 𝜆1 = 𝜆2 > 0, then the 

shape of the equilibrium point is an unstable node and the type of stability of the 

equilibrium point is unstable.  

 

 

 

 

 

 

8) If 𝜆1 and 𝜆2are two positive real numbers such that 𝜆1 = 𝜆2 > 0 then the shape 

of the equilibrium point is a stable node and the type of stability of the equilibrium 

point is stable.  

 

 

 

Figure 2.7 [19] Centre Point 

Figure 2.8 [19] Unstable Node 
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Remark 2.5.1 

        In the case of 𝜆1 = 0 or 𝜆2 = 0, we cannot determine the type of stability of 

the equilibrium point, so the Jacobi method in this case is not sufficient to 

determine the type of stability of the equilibrium point. Therefore, we need the 

Lyapunov method to determine the type of stability, and this is what we will talk 

about in detail in Chapter 3.  

Example 2.5.1 

        We can study the type of stability of the equilibrium points for the following 

nonlinear system:  

𝑥1̇ = 𝑥1 − 𝑥1
2 − 𝑥1𝑥2,                                          (2.5.4) 

𝑥2̇ = −𝑥2 + 𝑥1𝑥2 ,                                            (2.5.5) 

using the eigenvalues of Jacobian matrix as follows:  

1) We find the equilibrium points. To do that we put 𝑥1̇ = 0 and 𝑥2̇ = 0 in the 

equations (2.5.4) and (2.5.5), we get: 

𝑥1 − 𝑥1
2 − 𝑥1𝑥2 = 0, 

−𝑥2 + 𝑥1𝑥2 = 0, 

Figure 2.9 [19] Stable Node 
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we can rewrite the last equations as follows: 

𝑥1(1 − 𝑥1 − 𝑥2) = 0,                                       (2.5.6) 

𝑥2(−1 + 𝑥1) = 0,                                         (2.5.7) 

From the equations (2.5.6) and  (2.5.7), we have: 

• If  𝑥1 = 0 and 𝑥2 = 0, then the equilibrium point (𝑥1, 𝑥2 ) = (0, 0). 

• If 𝑥1 = 0 and −1 + 𝑥1 = 0, we get 𝑥1 = 1, this is impossible.  

• If 1 − 𝑥1 − 𝑥2 = 0 and 𝑥2 = 0, we gett 1 − 𝑥1 − 0 = 0, so 𝑥1 = 1, so the 

equilibrium point (𝑥1, 𝑥2 ) = (1, 0). 

        From the above, the equilibrium points of the system are  (0, 0), (1, 0), both 

appearing repeatedly in the solutions. 

2) Determine the Jacobian matrix using the form (2.5.2), where (𝑥1, 𝑥2) =

(0, 0), we get: 

𝐽(𝑥1, 𝑥2) = (
1 − 2𝑥1 − 𝑥2 𝑥1

𝑥2 −1 + 𝑥1
),   

3)                     𝐽∗ = 𝐽(0, 0) = (
1 0
0 −1

),   𝐽∗∗ = 𝐽(1, 0) = (
−1 1
   0  0

).   

4) Find the eigenvalues of 𝐽∗ by solving the following characteristic equation: 

𝑑𝑒𝑡(𝐽∗ − 𝜆𝐼) = 𝑑𝑒𝑡 ((
1 0
0 −1

) − (
𝜆 0
0 𝜆

)) = 𝑑𝑒𝑡 (
1 − 𝜆 0

0 −1 − 𝜆
) = 0,   

(1 − 𝜆)(−1 − 𝜆) = 0,  

1 − 𝜆 = 0, 𝜆 = 1,   

−1 − 𝜆 = 0, 𝜆 = −1.  

        Now, we find the eigenvalues of 𝐽∗∗ by solving the following 

characteristic equation: 

𝑑𝑒𝑡(𝐽∗∗ − 𝜇𝐼) = 𝑑𝑒𝑡 ((
−1 1
   0 0

) − (
𝜇 0
0 𝜇

)) = 𝑑𝑒𝑡 (
−1 − 𝜇 1

0 −𝜇
) = 0,  

−𝜇(−1 − 𝜇) = 0,  
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𝜇 = 0, 𝜇 = −1,   

5) Note that 𝜆 = 1 and 𝜆 = −1, that is, one positive and the other negative, then 

the shape of the equilibrium point is a saddle point and the type of stability of 

the equilibrium point (0, 0) is unstable. Also, note that  𝜇 = 0 and 𝜇 = −1, in 

this case we cannot determine the type of stability of the equilibrium point.   

2.5.2 Phase Plane Method [27] 

        In systems of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠, we can effectively use the phase plane to study 

the type of stability graphically rather than finding explicit analytical solutions to 

these  1zsystems, as finding such analytical solutions is difficult or impossible in 

these systems. The phase plane is a graphical tool for understanding the overall 

behavior of systems more descriptive than demonstrative. In other words, it is 

very important in qualitative analysis for understanding the behavior of solutions, 

meaning it determines the nature of the point and its path behavior as a geometric 

representation of the solutions; it is a visual geometric behavior. This method is 

explained in the following steps. 

        Let us consider the nonlinear system on the form (2.5.1). 

1) Find the equilibrium points for the system (2.5.1). 

2) Draw the vectors 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2).  

3) The shape of the paths around the equilibrium point illustrates the type of 

stability of the equilibrium point, that is: 

• Paths enter to the point from all directions, in this case the type of stability 

of equilibrium point is stable. 

• Paths exit from the equilibrium point or move away from it, in this case 

the type of stability of equilibrium point is unstable. 

• Paths enter from one direction and exit from another, in this case  the type 

of stability of equilibrium point is asymptotically stable.  
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The following figure illustrate that. 

 

 

 

 

 

 

 

 

 

    Figure 2.10 [27] Classification of Equilibrium Points Using Phase Plane 

Example 2.5.2  

        We can study the type of stability of the equilibrium points for the 

following nonlinear system:  

𝑥1̇ = −𝑥1 − 𝑥2
2, 

𝑥2̇ = −𝑥2 , 

using the phase plane method, as follows:  

1) We put 𝑥1̇ = 0 and 𝑥2̇ = 0 in the given system to find the equilibrium 

points, as follows: 

−𝑥1 − 𝑥2
2 = 0,                                        (2.5.10) 

−𝑥2 = 0.                                            (2.5.11) 

         From (2.5.11) we get 𝑥2 = 0, substituting in equation (2.5.10), we get 𝑥1 =

0, so  the equilibrium point is (0, 0). 

   2)    Draw the first vector −𝑥1 − 𝑥2
2 by finding points as follows:   

Unstable Stable    

  Unstable   

 

Asymptotically Stable 
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        Choose arbitrary value for 𝑥1, such that it is greater than zero, where 𝑥2 = 0. 

For example 𝑥1 =0.1, so −𝑥1 − 𝑥2
2 = −(0.1) − 0 = −0.1. hence the new point is 

(−0.1, 0). Choose another arbitrary value for 𝑥1, such that it is less than zero, 

where 𝑥2 = 0. For example 𝑥1 = −0.1, so −𝑥1 − 𝑥2
2 = −(−0.1) − 0 = 0.1, So 

the new point is (0.1, 0).  

        Now, we draw the second vector −𝑥2 by the same away. Choose arbitrary 

value for 𝑥2, such that it is greater than zero, where 𝑥1 = 0. For example 𝑥2 =0.1, 

so the new point is (0, 0.1). Choose another arbitrary value for 𝑥2, such that it is 

less than zero, where 𝑥1 = 0. For example 𝑥2 = −0.1, so the new point is 

(0, − 0.1).  

 

 

        

  

 

           

         

        From the above figure, we note the equilibrium point is (0, 0) is stable 

because all paths go to this point. 

2.5.3 Lyapunov Method [15] 

        This method considers from the important methods to study types of stability. 

It depends on building a suitable function called Lyapunov function, which will be 

discussed in detail in Chapter 3. 

 

Figure 2.11 [27] Illustration of Example (2.5.2) 
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Chapter 3 

Using Lyapunov Functions to Study the 

Stability of Nonlinear Systems of First 

Order Ordinary Differential Equations  

 

 

 

 

 

 

 

 

 

 



30 
 

Using Lyapunov Functions to Study the Stability of Nonlinear 

Systems of First Order Ordinary Differential Equations with  

Constant Coefficients 

 

        In 1892, the Russian scientist Alexander Lyapunov published his doctoral 

dissertation, "The General Problem of Stability of Motion'', which contained many 

fruitful ideas and important results. These results made it possible to divide the 

study of stability into two periods: the pre- Lyapunov period and the post- 

Lyapunov period. Lyapunov provided a precise definition of the stability of 

motion, in addition to presenting two fundamental methods for analyzing stability 

problems. He studied the concepts of stability by finding solutions that were 

applied concisely and led to significant results. 

Lyapunov worked on deriving the stability properties of the equilibrium of a 

system described by a nonlinear equation from the stability properties of its 

linearity (its transformation into a linear equation). This method is called 

Lyapunov indirect method or Lyapunov first method. However, he developed a 

more efficient method, Lyapunov direct method, which does not rely on prior 

knowledge of the solutions but deals directly with differential systems using 

special auxiliary functions called Lyapunov functions, which will be the subject of 

this chapter. Lyapunov worked on this method for over 100 years, and it became 

the primary tool for dealing with stability problems in various types of equations. 

It is also known for its efficiency and simplicity. 

3.1 Basic Concepts and Definitions 

        Let us consider the nonlinear system 𝑥̇ = 𝑓(𝑥), for study the stability of this 

system, we give the following definition.  

Definition 3.1.1 [2]  

        The equilibrium point According to Lyapunov is the point at which the 

system comes to a complete stop. In other words, it is the point where all 

derivatives of the system are equal to zero, such that if the system starts from this 

point, it will always remain there.  
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        To find the equilibrium point, we put all derivatives 𝑥̇ equal to zero, then 

solve the equations of the system. The point where 𝑓(𝑥∗) = 0 is the equilibrium 

point. Here, we chose the equilibrium point at (0,0), because it simplifies the 

analysis, doesn't affect the result, and preserves generality.  

         Lyapunov did not invent a new point of equilibrium, but rather he invented 

the language and mathematical tools necessary to understand the behavior of the 

system near this point and hoe its stability is secured. 

Definition 3.1.2 [21]  

        The equilibrium point 𝑥∗ is said to be stable according to Lyapunov if the 

following condition is satisfied: 

∀𝜀 > 0 there exists 𝛿(𝜀) > 0, such that ‖𝑥(0)‖ < 𝛿 implies ‖𝑥(𝑡)‖ < 𝜀 for 

all 𝑡 ≥ 0.                                                                                                          (3.1.1)  

 

Figure 3.1 [16] Stability in Lyapunov Concept 

Definition 3.1.3 [21] 

Instability according to Lyapunov is defined as the negation of the stability 

condition, i.e., if the condition (3.1.1) does not satisfy, then the equilibrium point 

is unstable.  

 

Figure 3. 2 [16] Instability in Lyapunov Concept 
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Definition 3.1.4 [21]  

        The equilibrium point 𝑥∗ is asymptotically stable if it is stable according to 

Lyapunov, in addition to the presence of an attractive region around it, such that if 

the movement starts within this region, it will converge towards equilibrium, i.e.,  

lim
𝑡→∞

‖𝑥(𝑡) − 𝑥∗‖ = 0.   

 

Figure 3.3 [16] Asymptotically Stable in Lyapunov Concept 

3.2 Types of Stability According to Lyapunov [11] 

i. Uniform stability: It is a type of stability where 𝛿 and 𝜀 do not depend on 

the initial time 𝑡, meaning that this type of stability is not affected by changes in 

the initial time, it is uniform over time. 

ii. Exponential stability: This is a type of stability where the solution not only 

stays close to the equilibrium point, but approaches it at an exponential speed over 

time. That is, as time increases, the distance from the equilibrium point decreases 

at an exponential speed, i.e., at a large and regular speed. 

iii. Instability: It is the opposite of stability, meaning that if the course of the 

situation or solution starts very close to the point of equilibrium, the solution 

moves away from that point over time. 

3.3 The Conditions of Lyapunov Function [28] 

         Lyapunov's theorem is fundamental to analyzing the behavior of dynamical 

systems, especially nonlinear systems. It relies on selecting a function that 

resembles the energy of the system. This function must be positive everywhere 

except at the equilibrium point. The Lyapunov function method is used to directly 

investigate the stability of the equilibrium position of a system 𝑥̇ = 𝑓(𝑥) with 
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help of suitably chosen function 𝑉(𝑥) (the Lyapunov function). This is done 

without finding the solutions for the systems. In the following we give conditions 

of Lyapunov function 𝑉(𝑥). 

1) 𝑉(𝑥) must be specific definitely positive: meaning, 𝑉(𝑥) > 0, for all 𝑥∗ =

𝑥, 𝑉(𝑥∗) = 0. That is, the energy is always positive and becomes zero only at the 

equilibrium point [13].  

2) 𝑉(𝑥) must be continuous and its partial derivatives must also be 

continuous. 

3.4 The Lyapunov Function and its The Importance [10] 

         The scientist Lyapunov demonstrated that certain functions could be used 

for stability analysis instead of analysis. These functions are called Lyapunov 

functions; they are natural functions and energy functions, and they are the tools 

for applying Lyapunov theory to a specific system. Lyapunov functions are 

standard functions, denoted by the symbol v, which we choose to analyze the 

stability of a system. They enable us to understand the system's behavior and 

avoid the difficulty of solving the problem.  

        Choosing a Lyapunov function is a fundamental and influential step in 

analyzing the stability of systems, as there is no fixed rule that predetermines the 

form of the function. Rather, the choice depends on the nature of the system under 

study.  

i. If the system is physical, we choose an energy function.  

ii. If the system is algebraic, we use a general quadratic function and adjust 

the coefficients.  

iii. If there is no clear method, we use linearization or trial and error.  Since 

choosing the appropriate Lyapunov function for any system, especially in a 

nonlinear system, is the most difficult and the most important step in stability 

analysis, the Lyapunov function chosen in this research was chosen to be in the 

following form:  

       𝑉(𝑥1, 𝑥2 ) =
1

2
(𝑥1

2 + 𝑥2
2).                                 (3.4.1) 
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 This function is the most used function in stability analysis, because it is 

always strictly positive (determined) for every (𝑥1, 𝑥2 ) ≠ (0, 0), and it is zero 

only at the equilibrium point, its derivatives with respect to time are easy to 

calculate, and it helps determine the type of stability using Lyapunov conditions 

without needing to solve the system completely. Also, the equilibrium point is the 

origin because most dynamical systems can be transformed so that the equilibrium 

point is the origin without losing generality. The importance of Lyapunov 

functions lies in their being a powerful tool for understanding the behavior of 

systems without needing to solve differential equations directly. They can be used 

in all linear and nonlinear systems and do not depend on linear properties or 

eigenvalues. From the sign of the derivative of the function 𝑉(𝑥1, 𝑥2 ), we can 

decide the type of stability [3].  

        The derivative of the function 𝑉(𝑥1, 𝑥2 ) is 𝑉̇(𝑥1, 𝑥2), it takes the following 

form: 

𝑉̇(𝑥1, 𝑥2) = 𝑉̇(𝑥) =
𝜕𝑉

𝜕𝑥1
𝑥1̇ +

𝜕𝑉

𝜕𝑥2
𝑥2̇ =

𝜕𝑉

𝜕𝑥1
𝑓1(𝑥) +

𝜕𝑉

𝜕𝑥2
𝑓2(𝑥)   

= (
𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2
) (

𝑓1(𝑥)

𝑓2(𝑥)
) =

𝜕𝑉

𝜕𝑥
𝑓(𝑥).                         (3.4.2) 

        In general if 𝑉(𝑥) is Lyapunov function in the variables 𝑥1, 𝑥2, … , 𝑥𝑛, then: 

𝑉̇(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑉̇(𝑥) = ∑
𝜕𝑉

𝜕𝑥𝑖

𝑛
𝑖=1 𝑥𝑖̇ = ∑

𝜕𝑉

𝜕𝑥𝑖

𝑛
𝑖=1 𝑓𝑖(𝑥)   

= (
𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2
…

𝜕𝑉

𝜕𝑥𝑛
 ) (

𝑓1(𝑥)

𝑓2(𝑥)
⋮

𝑓𝑛(𝑥)

) =
𝜕𝑉

𝜕𝑥
𝑓(𝑥).    
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3.5 Basic Theorems 

        In the following, we give important theorems which help us to study  the 

stability of nonlinear systems of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠. 

Theorem 3.5.1 [7] 

        The function 𝑉(𝑥1, 𝑥2 ) = 𝑥1
2 + 𝑎𝑥1𝑥2 + 𝑏𝑥2

2  is: 

i. positive definitely iff 4𝑏2 − 𝑎2 > 0.  

ii. Semi-positive iff 4𝑏2 − 𝑎2 ≥ 0. 

Theorem 3.5.2 [7] 

        Suppose that 𝑉(𝑥1, 𝑥2 ) is Lyapunov function for the following system: 

𝑥1̇ = 𝐹(𝑥1, 𝑥2), 

𝑥2̇ = 𝐺(𝑥1, 𝑥2).  

i. If 𝑉̇(𝑥1, 𝑥2) negative-semi definitely, then the origin is stable. 

ii. If 𝑉̇(𝑥1, 𝑥2) definitely negative, then the origin is asymptotically 

stable. 

iii. If 𝑉̇(𝑥1, 𝑥2) definitely positive, then the origin is unstable. 

Remarks 3.5.1 

i.𝑉(𝑥) is definitely negative, meaning 𝑉(𝑥) <  0 for all 𝑥 ≠ 0, i.e., the 

function is less than zero at all points except the origin, 𝑉(0) = 0.  

ii. 𝑉(𝑥) is semi-negative, meaning 𝑉(𝑥) ≤  0 for all 𝑥, 𝑉(0) = 0. 

iii. 𝑉(𝑥) is semi-positive, meaning 𝑉(𝑥) ≥  0 for all 𝑥 in the vicinity, 

             𝑉(0) = 0 at the equilibrium point. 

Theorem 3.5.3 [11] (Lyapunov Theorem for Asymptotic Stability) 

        If we have a system of differential equations 𝑥̇ = 𝑓(𝑥), and a constant-signed 

function 𝑉(𝑥) such that its total derivative with respect to time is also a constant-

signed function but with the opposite sign to 𝑉(𝑥), then the equilibrium point 

𝑥∗ = 0 is asymptotically stable. 
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3.6 Lyapunov Method for Studing the Stability  

        We explain Lyapunov method in the following steps: 

1) Write the nonlinear system 𝑥̇ = 𝑓(𝑥) about the equilibrium point. 

2) Choose a Lyapunov function 𝑉(𝑥), such that always be positive, i.e., 

𝑉(𝑥) > 0, for all 𝑥 ≠ 0. We choose this function such that it satisfies the 

condition 𝑉(0) = 0.  

3) Calculate the Lyapunov derivative (3.4.2) along the paths of the system.  

4) We analyze the sign of the derivative: 

i. If 𝑉̇(𝑥) < 0, the system is asymptotically stable.  

ii. If 𝑉̇(𝑥) ≤ 0, the system is stable according to Lyapunov. 

iii. If 𝑉̇(𝑥) > 0, the system is unstable.  

5) Interpret the result: We deduce the type of stability based on the previous 

conditions without needing to solve the system. 

3.7 Illustrative Examples 

Example 3.7.1  

Investigate the stability of the equilibrium point of the following system 

𝑥1̇ = (−𝑥1)3 + 𝑥1𝑥2
2, 

𝑥2̇ = −2𝑥1
2𝑥2 − 𝑥2

3. 

        The equilibrium point of the given system is the origin (0,0). We suggest 

Lyapunov function (3.4.1), it is: 

𝑉(𝑥1, 𝑥2 ) =
1

2
(𝑥1

2 + 𝑥2
2).  

        Note that:  𝑉(0, 0 ) = 0. We use the equation (3.4.2), as follows: 

𝑉̇(𝑥1, 𝑥2) =
𝜕𝑉

𝜕𝑥1
𝑥1̇ +

𝜕𝑉

𝜕𝑥2
𝑥2̇  

= 𝑥1(−𝑥1
3 + 𝑥1𝑥2

2) + 𝑥2(−2𝑥1
2𝑥2 − 𝑥2

3) 

= −𝑥1
4 + 𝑥1

2𝑥2
2 − 2𝑥1

2𝑥2
2−𝑥2

4  
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𝑉̇(𝑥1, 𝑥2) = −𝑥1
4 − 𝑥1

2𝑥2
2−𝑥2

4  < 0,  

        Since 𝑉(𝑥1, 𝑥2 ) is definitely positive (using theorem (3.5.1)), and 

𝑉̇(𝑥1, 𝑥2) < 0, then the equilibrium point is asymptotically stable. 

Example 3.7.2  

Investigate the stability of the equilibrium point of the following system 

𝑥1̇ = 𝑥1
3, 

𝑥2̇ = 2𝑥1
2𝑥2 + 4𝑥1

2𝑥2 + 2𝑥2.  

        The equilibrium point of the given system is the origin (0,0). We suggest 

Lyapunov function (3.4.1), it is: 

𝑉(𝑥1, 𝑥2 ) =
1

2
(𝑥1

2 + 𝑥2
2).  

𝑉(0,0 ) > 0. 

        We use the equation (3.4.2), as follows: 

𝑉̇(𝑥1, 𝑥2) =
𝜕𝑉

𝜕𝑥1
𝑥1̇ +

𝜕𝑉

𝜕𝑥2
𝑥2̇  

= 𝑥1(𝑥1
3) + 𝑥2(2𝑥1

2𝑥2 + 4𝑥1
2𝑥2 + 2𝑥2) 

= 𝑥1
4+2𝑥1

2𝑥2
2

+4𝑥1
2𝑥2

2
+ 2𝑥2

2  

= 𝑥1
4+6𝑥1

2𝑥2
2

+ 2𝑥2
2  

𝑉̇(𝑥1, 𝑥2) = 𝑥1
4+6𝑥1

2𝑥2
2

+ 2𝑥2
2  > 0,  

        Since 𝑉(𝑥1, 𝑥2 ) is definitely positive (see theorem (3.5.1)), and 𝑉̇(𝑥1, 𝑥2) >

0, then the equilibrium point is unstable. 

Example 3.7.3  

Investigate the stability of the equilibrium point of the following system 

𝑥1̇ = −𝑥1𝑥2, 
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𝑥2̇ = 𝑥1
2 − 𝑥2

3.  

        The equilibrium point of the given system is the origin (0,0). We suggest 

Lyapunov function (3.4.1), it is: 

𝑉(𝑥1, 𝑥2 ) =
1

2
(𝑥1

2 + 𝑥2
2).  

        We test the equilibrium point:  𝑉(0, 0 ) = 0. We use the equation (3.4.2), as 

follows: 

𝑉̇(𝑥1, 𝑥2) =
𝜕𝑉

𝜕𝑥1
𝑥1̇ +

𝜕𝑉

𝜕𝑥2
𝑥2̇  

𝑉̇(𝑥1, 𝑥2) = 𝑥1(−𝑥1𝑥2) + 𝑥2(𝑥1
2 − 𝑥2

3) 

= −𝑥1
2𝑥2 + 𝑥1

2𝑥2 − 𝑥2
4  

= −𝑥2
4  

𝑉̇(𝑥1, 𝑥2) = −𝑥2
4 ≤ 0,  

        Since 𝑉(𝑥1, 𝑥2 ) is definitely positive (see theorem (3.5.1)), and 𝑉̇(𝑥1, 𝑥2) ≤

0, then the equilibrium point is stable. 
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Chapter 4 

Application of Stability Analysis Using 

Lyapunov Functions on a 3D-Drone 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

Application of Stability Analysis on a 3D-Drone 

 

        In this chapter, we apply our study in the third chapter to analysis the 

stability of a drone in three-dimensional space (3D-drone) using a nonlinear 

mathematical model. This model incorporates translational motion along the three 

axes, as well as the rotational angles around each axis. 

        We begin by constructing a comprehensive physical model that accounts for 

the forces generated by the four propellers, gravity, and moments (torques). The 

model assumes that all system parameters such as mass and moment of inertia—

remain constant. Subsequently, this model is converted into a system of 1𝑠𝑡 −

𝑁𝐿𝑂𝐷𝐸𝑠. Following this, we determine the principal equilibrium point, defined 

by zero velocities, zero angles, and balanced thrust force. 

        Accordingly, Lyapunov stability theory is applied to analyze the system's 

stability. A quadratic Lyapunov function, based on all system states, is tested to 

verify stability [4-6, 16, 17, 26, 30]. 

 

Figure 4.1 3D-Drone 
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4.1 Basic Concepts 

        In this section, we give important concepts needed to understand our work in 

this chapter.  

Definition 4.1.1 (Moment)  

        The Moment is the effect of rotation caused by a force acting on an object 

around a specific point or axis.  

Definition 4.1.2 (Position Vector) 

        A position vector is a vector that describes the position of a point relative to a 

fixed reference point (often the origin), it starts at the reference point and ends at 

the point whose position is to be described, specifying its direction and distance 

from the reference point. It is a fundamental concept in physics and engineering 

for accurately describing motion and spatial relationships. It is denoted by the 

symbol 𝑝.  

Definition 4.1.3 (Acceleration of Gravity)  

        The acceleration of gravity is the acceleration that freely falling objects gain 

near the Earth's surface and it is approximately 9.8 𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑2(9.8 𝑚/𝑠2). 

It is  denoted by the symbol 𝑔, that is  𝑔 = 9.8 𝑚/𝑠2 . 

Definition 4.1.4 (Angular Velocity)  

        The angular velocity is a measure of how fast an object rotates about an axis, 

or the amount of angular distance the object travels per unit time, measured in 

Radians per second (𝑟𝑎𝑑/𝑠).  

Definition 4.1.5 (Rotation Matrix)  

        A rotation matrix is a square orthogonal matrix used in linear algebra to 

transform vector or coordinate systems in Euclidean space without changing the 



42 
 

length of the vector or the size of the shape while keeping the axes constant. It is 

used to represent direction in some fields, such as robotics, image equations, and 

computers: It denoted by 𝑅. 

Definition 4.1.6 (Euler's constant) 

        Euler's constant is a fundamental mathematical constant, approximately equal 

to 2.71828, and is used in analysis, differential, and integration as a basis for 

exponential functions.  

Definition 4.1.7 (Euler's angles)  

        Euler's angles are a set of three consecutive intrinsic rotations that describe 

the orientation of a three- dimensional object. They are widely used in physics, 

engineering and mechanics to describe the rotation motion of a three- dimensional 

object, such as the rotation of an airplane or a spacecraft.  

Definition 4.1.8 (Resistance ) 

        Resistance is a physical property of metallic conductors in electrical circuits. 

It is defined as the ability of materials to resist electric current. It is denoted by 𝐹𝑑. 

Definition 4.1.9 (Linear Velocity) 

        Linear velocity is the rate of change of an object's position with respect to 

time during its movement in a straight line, it is measured in meter/second. In 

other words, the linear velocity is a vector quantity that expresses both the speed 

and direction of an object's motion at a given instant, it is denoted by 𝑣.  

Definition 4.1.10 (The Perturbed Moment)  

         The perturbed moment is the effect of disturbance on physical quantities, 

such as dipole moment in batteries and electricity, or torque in mechanics due to 

the presence of an external field or force, which causes a change in the behavior of 

the basic system, it is denoted by 𝜏𝑑𝑖𝑠𝑡. 
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4.1.11 Control Moment  

        Control moment is a rotational force used to guide and stabilize mechanical 

systems such as satellites and robots, it is implemented via a Gyroscope 

mechanisms. It is denoted by 𝜏.  

4.1.12 Moment Matrix  

        A moment matrix is a matrix that describes how mass is distributed in a rigid 

body with respect to a given axis of rotation. It defines the relationship between 

angular velocity, and between moment and angular acceleration in three 

dimensions. It is denoted by 𝐼 . 

4.1.13 Positive Matrix  

        The positive matrix is a comprehensive square matrix that makes the value of 

the square shape always positive for any non-zero vector. It is denoted by 𝑘. 

4.1.14 Mass 

        The mass is a measure of the amount of matter in an object, it is a constant 

property that does not change with location or gravity. It is also known as a 

measure of inertia (an object's resistance to change in its state of motion), it is 

denoted by 𝑚 and measured in gram or kilogram   

4.2 Model Equations for a 3D-Drone  

𝑚𝑝̈ = 𝑚𝑔𝑒𝜀 + 𝑅(𝜂) (
0
0
𝜏

) + 𝐹𝑑(𝑣),                              (4.2.1) 

where 

𝑒𝜀 = (0 0 −1)𝑡 = (
0
0

−1
).  
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        𝑝 is a position vector, its components are called position components. 𝑝̇ is a 

linear velocity, 𝜂 is a vector of Euler's angles, 𝜔 is a vector of angular velocities: 

𝑝 = (
𝑥
𝑦
𝑧

) , 𝑝̇ = (

𝑣𝑥

𝑣𝑦

𝑣𝑧

) , 𝜂 = (

𝜑
𝜃
𝜓

) , 𝜔 = (

𝜔𝑥

𝜔𝑦

𝜔𝑧

).   

        Now, if we consider the direction of gravity to be downwards and 𝐹𝑑(𝑣) 

represents the effect of air resistance, then we write: 

𝑝̇ = 𝑣,   

𝑣̇ =
1

𝑚
𝑅(𝜂)𝑒𝜀𝑇 + 𝑔𝑒𝜀 +

1

𝑚
𝐹𝑑(𝑣).                                (4.2.2) 

𝑔𝑒𝜀 = (
0
0

−𝑔
),  

is chosen according to the direction.  

        Now, the rotational equations: 

𝐼𝜔̇ + 𝜔(𝐼𝜔) = 𝜏 + 𝜏𝑑𝑖𝑠𝑡 ,                                   (4.2.3) 

where 𝜏𝑑𝑖𝑠𝑡 represents the disturbance moments that can be neglected in 

fundamental analysis, also 

𝜂̇ = 𝐽(𝜂)𝜔,                                               (4.2.4) 

so, we define the following vector: 

𝑥 = (

𝑝
𝑣
𝜂
𝜔

),  

to get the following standard formula: 

𝑥̇ = 𝑓(𝑥) + 𝐺(𝑥)𝑈,  
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where 𝑓(𝑥) sums the coefficients of gravity and internal nonlinearity, 𝐺(𝑥) 

represents the distribution of the input over the equations. 

        Now, we choose the equilibrium point: 

𝑝𝑒𝑞 = (

𝑥0

𝑦0

𝑧0

),   

where 𝑥0 = 𝑦0 = 𝑧0 , so: 

𝑣𝑒𝑞 = 0, 𝜂𝑒𝑞 = (
0
0

𝜓0

) , 𝜓0 = 0, 𝜔𝑒𝑞 = 0, 𝑇𝑒𝑞 = 𝑚𝑔, 𝜏𝑒𝑞 = 0.   

        Now, we define:  

𝛿𝑥 = 𝑥 − 𝑥𝑒𝑞 ,  

𝛿𝑈 = 𝑈 − 𝑈𝑒𝑞 ,  

so,  

𝛿𝑥̇ = 𝐴 ∙ 𝛿𝑥 + 𝐵𝛿𝑈,  

where  

𝐴 =
𝜕𝑓

𝜕𝑥
, 𝐵 =

𝜕𝑓+𝐺𝑈

𝜕𝑈
= 𝐺(𝑥),  

the matrices 𝐴 and 𝐵 are constant at the equilibrium point, they use to design a 

linear controller and prove stability using Lyapunov function. 

        Now, we choose two rings: 

i. The outer ring: 

        We position error locator:          
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𝑒𝑝 = 𝑝 − 𝑝𝑟𝑒𝑓 ,  

and error velocity: 

𝑒𝑣 = 𝑣 − 𝑣𝑟𝑒𝑓 ,  

then, we choose: 

𝑎𝑑𝑒𝜀
= −𝑘𝑝𝑒𝑝 − 𝑘𝑣𝑒𝑝 + 𝑎𝑟𝑒𝑓 ,  

where 𝑘𝑝 and 𝑘𝑣 are positive matrices. Now, we want to verify the following 

equation: 

1

𝑚
𝑅(𝜂)𝑒𝜀𝑇 + 𝑔𝑒𝜀 = 𝑎𝑟𝑒𝑓 ,  

therefore, we need to pay: 

𝑇𝑐𝑚𝑑 = 𝑚‖𝑎𝑑𝑒𝑠 − 𝑔𝑒𝜀‖. 

ii. The inner ring 

We derive the error direction as the following: 

𝑒𝑅 =
1

2
(𝑅𝑑𝑒𝑠

𝑡 𝑅 − 𝑅𝑡𝑅𝑑𝑒𝑠),  

𝜏 = −𝑘𝑅𝑒𝑅 − 𝑘𝜔(𝜔 − 𝜔𝑑𝑒𝑠) + 𝜔(𝐼𝜔),      

where 𝑘𝑅 and 𝑘𝜔 are positive matrices. 

4.3 Choosing Lyapunov Function 

        We choose the following Lyapunov function:   

𝑉(𝑥) =
1

2
𝑚‖𝑣 − 𝑣𝑟𝑒𝑓‖

2
+

1

2
(𝑝 − 𝑝𝑟𝑒𝑓)

𝑡
𝑘𝑝(𝑝 − 𝑝𝑟𝑒𝑓) +

1

2
𝜔𝑡𝐼𝜔 +

                                                          𝜓(𝑅, 𝑅𝑑𝑒𝑠).                                      (4.2.5) 
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        Lyapunov function was chosen for an energy similar to the sum of the kinetic 

energy and the squares of positional errors., such that 𝜓(𝑅, 𝑅𝑑𝑒𝑠) is a directional 

error measurement function. 

Properties of Lyapunov selected function 

i. 𝑉(𝑥) is a positive function.  

ii. 𝑉(𝑥) = 0 at 𝜔 = 0. 

iii. 𝑅 =  𝑅𝑑𝑒𝑠 , 𝑣 = 𝑣𝑟𝑒𝑓 , 𝑝 = 𝑝𝑟𝑒𝑓 .  

iv. 𝑉̇ depends on 𝑣, 𝑎𝑑𝑒𝑠  and 𝜏. 𝑇 𝑎𝑛𝑑 𝜏 can be selected such that 𝑉̇ is 

negative. 

        Now, we calculate 𝑉̇ as the following: 

        Firstly, we calculate the derivative of 𝑉(𝑥) with the equation (4.2.5) along 

the path, part by part. We derive the first two terms of the equation (4.2.5), as the 

following: 

𝑑

𝑑𝑡
(

1

2
𝑚‖𝑣 − 𝑣𝑟𝑒𝑓‖

2
) = 𝑚(𝑣 − 𝑣𝑟𝑒𝑓)

𝑡
𝑣̇ ,   

𝑑

𝑑𝑡
(

1

2
(𝑝 − 𝑝𝑟𝑒𝑓)

𝑡
𝑘𝑝(𝑝 − 𝑝𝑟𝑒𝑓)) = (𝑝 − 𝑝𝑟𝑒𝑓)

𝑡
𝑘𝑝(𝑣 − 𝑣𝑟𝑒𝑓).  

Secondly, we derive the parts of the rotation as the following:  

𝑑

𝑑𝑡
(

1

2
𝜔𝑡𝐼𝜔) = 𝜔𝑡(𝐼𝜔̇), 

𝑑

𝑑𝑡
(𝜓(𝑅, 𝑅𝑑𝑒𝑠)) = (𝑒𝑅)𝑘𝑅(𝜔 − 𝜔𝑑𝑒𝑠).  

        Now, we collect all parts and substitute 𝑣̇ with its equivalent in equation 

(4.2.2), and 𝜔̇ with its equivalent in equation (4.2.3), we get:  
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𝑉̇(𝑥) = (𝑝 − 𝑝𝑟𝑒𝑓)
𝑡
𝑘𝑝(𝑣 − 𝑣𝑟𝑒𝑓) + 𝑚(𝑣 − 𝑣𝑟𝑒𝑓)

𝑡
(

1

𝑚
𝑅(𝜂)𝑒𝜀𝑇 + 𝑔𝑒𝜀 +

1

𝑚
𝐹𝑑(𝑣)) + 𝜔𝑡(𝜏 − 𝜔(𝐼𝜔)) + (𝑒𝑅)𝑘𝑅(𝜔 − 𝜔𝑑𝑒𝑠).  

        Finally, we organize the functions to get: 

𝑉̇ ≤ −𝑐1 ‖𝑣 − 𝑣𝑟𝑒𝑓‖
2

− 𝑐2 ‖𝑒𝑅‖2 − 𝑐3 ‖𝜔‖2,  

where 𝑐𝑖 > 0, 𝑖 = 1, 2, 3. Since 𝑉(𝑥) is positive, and the time limit 𝑉̇ ≤ 0, then 

the path remains confined within the surface area of the plane 𝑉(𝑥).  

        The fundamental result is that the stability of the 3D-drone can be 

comprehensively guaranteed in three-dimensional space. 

4.4 Numerical Simulation 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.2 Quadrotor Position   
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Figure 4.3 Euler Angles 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 

Figure 4.4 Lyapunov Function 
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Conclusion 

 

        Based on the stability analysis conducted in our study, which included a 

review of systems of 1𝑠𝑡 − 𝑁𝐿𝑂𝐷𝐸𝑠, the concept of equilibrium points, and some 

methods of stability analysis "Jacobian and the eigenvalue, path plane", 

culminating in the direct Lyapunov method, in addition to an applied model "3D 

drone motion modeling", we get the following results: 

i. The effectiveness and limitations of traditional methods in determining the 

type of stability around the equilibrium points of simple systems, and that 

Jacobian method is an actual application of the indirect Lyapunov method. 

ii. Classical methods, such as the phase plane approach and the Jacobian 

method, mainly rely on geometric representations or on linearizing the 

system around an equilibrium point. Consequently, their results are often 

limited in scope and do not accurately capture the full nonlinear behavior of 

the system. In contrast, Lyapunov’s direct method is a rigorous analytical 

tool that is based on the original nonlinear model without requiring explicit 

solutions of the differential equations. This approach provides a clear 

mathematical framework for proving stability, making it particularly well 

suited for the analysis of complex nonlinear systems. 

iii. Lyapunov function (3.4.1) was chosen because it is simple form greatly 

facilitated the differential process, allowing for a focus on the behavior of 

the system rather than the mathematical complexity of the complex 

Lyapunov function. 

iv. Lyapunov functions are the ideal choice to ensure the stability of complex 

dynamic systems such as aircraft, provided that the obstacle of choosing the 

appropriate function is overcome. 

v. The practical application to 3D-drone led to the success of the modeling, 

meaning that it was determined that the movement of the 3D-drone could 

be accurately formulated as a nonlinear dynamic system. 
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Recommendations for Future Research 

 

        We recommend for future studying, studing and analysis the stability of 

nonlinear  systems of fractional order ordinary differential equations with variable 

coefficients using Lyapunov methods, also analysis the stability of nonlinear  

systems with time-delays and using the Mathematica (or Matlab) program to 

construct Lyapunov functions symbolically and numerically. 
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Appendix 1  

 

 %simulate_quad3D.m 

Quadrotor 3D% محاكاة  مع تحكم   position->attitude و حساب   V و   Vdot 

Clear; clc; close all ; 

 

 %----------------  PARAMETERS  ----------------  

M = 1.2;                     % mass (kg) 

I = diag([0.014, 0.014, 0.028]); % Inertia matrix (kg*m^2) 

G = 9.81 ; 

 

 %aerodynamic damping (simple linear drag) 

D = diag([0.1, 0.1, 0.2]) ; 

 

 %controller gains (tune these) 

Kp_pos = diag([6,6,10]);     % position P 

Kv_pos = diag([4.5,4.5,6]);  % velocity D 

 

Kp_att = diag([80,80,60]);   % attitude P (for phi,theta,psi) 

Kw_att = diag([4,4,1.5]);    % angular rate D 

 

 %reference (hover at origin, z_ref = 1.0 m) 

P_ref = [0;0;1.0] ; 

V_ref = [0;0;0] ; 

Psi_ref = 0; % desired yaw 
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 %initial condition: [p; v; eta (phi theta psi); omega] 

X0 = [  0.5; -0.4; 0.8;    % position x,y,z 

         0 ;0  ;0 %           ; linear velocities 

         0.1  ;0.15 ;0.0 %    ; phi, theta, psi (rad) 

         0.0  ;0.0  ;0.0  %   ;] angular rates p,q,r 

 

Tspan = [0 10] ; 

 

 %ODE solve 

Opts = odeset('RelTol',1e-6,'AbsTol',1e-8) ; 

[t, X] = ode45(@(t,X) quad3D_dynamics(t, X, m, I, g, D, Kp_pos, Kv_pos, Kp_att, Kw_att, 

p_ref, v_ref, psi_ref), tspan, X0, opts) ; 

 

 %compute control Inputs, V and Vdot along trajectory 

N = length(t) ; 

T_traj = zeros(N,1) ; 

Tau_traj = zeros(N,3) ; 

V_traj = zeros(N,1) ; 

Vdot_traj = zeros(N,1) ; 

For i=1:N 

     Xi = X(I, :)' ;  

    [Tcmd, tau, phi_des, theta_des, psi_des, a_des] = controller_quad3D(Xi, m, g, Kp_pos, 

Kv_pos, Kp_att, Kw_att, p_ref, v_ref, psi_ref) ; 

    T_traj(i) = Tcmd ; 

    Tau_traj(I,:) = tau' ; 

    [V_traj(i), Vdot_traj(I)] = computeLyap_quad3D(Xi, m, I, Kp_pos, Kp_att, p_ref, v_ref, 

psi_ref, Tcmd, tau) ; 
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End 

 

 %----------------  PLOTS   ----------------  

  %3 D trajectory 

Figure; 

Plot3(X(:,1), X(:,2), X(:,3), 'LineWidth', 1.8); hold on ; 

Plot3(p_ref(1), p_ref(2), p_ref(3), 'r*','MarkerSize',10) ; 

Xlabel('x (m)'); ylabel('y (m)'); zlabel('z (m)') ; 

Grid on; title('3D Trajectory'); view(45,30) ; 

 

 %positions 

Figure; 

Subplot(3,1,1); plot(t, X(:,1)); ylabel('x (m)'); grid on ; 

Subplot(3,1,2); plot(t, X(:,2)); ylabel('y (m)'); grid on ; 

Subplot(3,1,3); plot(t, X(:,3)); ylabel('z (m)'); xlabel('t (s)'); grid on ; 

Sgtitle('Positions') ; 

 

 %Euler angles 

Figure; 

Subplot(3,1,1); plot(t, X(:,7)); ylabel('\phi (rad)'); grid on; 

Subplot(3,1,2); plot(t, X(:,8)); ylabel('\theta (rad)'); grid on ; 

Subplot(3,1,3); plot(t, X(:,9)); ylabel('\psi (rad)'); xlabel('t (s)'); grid on ; 

Sgtitle('Euler angles') ; 

 

 %linear and angular velocities 

Figure; 
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Subplot(2,1,1) ; 

Plot(t, X(:,4), t, X(:,5), t, X(:,6)); legend('v_x','v_y','v_z'); title('Linear velocities'); grid on ; 

Subplot(2,1,2) ; 

Plot(t, X(:,10), t, X(:,11), t, X(:,12)); legend('p','q','r'); title('Angular rates'); grid on ; 

 

 %Lyapunov V and Vdot 

Figure; 

Subplot(2,1,1); plot(t, V_traj, 'LineWidth',1.5); title('V(t)'); grid on ; 

Subplot(2,1,2); plot(t, Vdot_traj, 'LineWidth',1.5); title('Vdot(t)'); grid on ; 

Xlabel('t (s)') ; 

 

 %control inputs 

Figure; 

Subplot(2,1,1); plot(t, T_traj, 'LineWidth',1.2); title('Total Thrust T'); grid on ; 

Subplot(2,1,2); plot(t, tau_traj); legend('\tau_x','\tau_y','\tau_z'); title('Torques \tau'); 

grid on ; 

 

  %Print final state & V 

Fprintf('Final position: [%.4f, %.4f, %.4f]\n', X(end,1), X(end,2), X(end,3)) ; 

Fprintf('Final Euler (phi,theta,psi): [%.4f, %.4f, %.4f]\n', X(end,7), X(end,8), X(end,9)) ; 

Fprintf('Final V = %.6f, Vdot = %.6f\n', V_traj(end), Vdot_traj(end)) ; 
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Appendix 2 

Construction of Equations 

 

Function dX = quad3D_dynamics(~, X, m, I, g, D, Kp_pos, Kv_pos, Kp_att, Kw_att, p_ref, 

v_ref, psi_ref) 

 %X = [p(3); v(3); eta(3); omega(3)] 

 

 %unpack 

P = X(1:3) ; 

V = X(4:6) ; 

Phi = X(7); theta = X(8); psi = X(9) ; 

Omega = X(10:12) ; 

 

 %controller -> compute T and tau 

[Tcmd, tau, phi_des, theta_des, psi_des, a_des] = controller_quad3D(X, m, g, Kp_pos, 

Kv_pos, Kp_att, Kw_att, p_ref, v_ref, psi_ref) ; 

 

 %rotation matrix R (body to inertial) from ZYX Euler: R = Rz(psi)*Ry(theta)*Rx(phi) 

R = rotationMatrixFromEuler(phi, theta, psi) ; 

 

 %translational dynamics 

 %gravity vector (in inertial): [0;0;-g] 

Grav = [0;0;-g] ; 

 

 %drag 

Fd = - D * v ; 
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V_dot = (1/m) * (R * [0;0;Tcmd]) + grav + (1/m)*Fd ; 

 

 %rotational dynamics 

Omega_dot = I \ (tau – cross(omega, I*omega)) ; 

 

 %Euler rates mapping from body rates omega to euler_dot 

Teta = eulerRatesMatrix(phi, theta) ; 

Eta_dot = Teta * omega ; 

 

 %pack derivative 

dX = zeros(12,1) ; 

dX(1:3) = v ; 

dX(4:6) = v_dot ; 

dX(7:9) = eta_dot ; 

dX(10:12) = omega_dot ; 

end 

 

 %---- helper functions  ----  

Function R = rotationMatrixFromEuler(phi, theta, psi) 

    Rz = [ cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1] ; 

    Ry = [ cos(theta) 0 sin(theta); 0 1 0; -sin(theta) 0 cos(theta)] ; 

    Rx = [1 0 0; 0 cos(phi) -sin(phi); 0 sin(phi) cos(phi)] ; 

    R = Rz * Ry * Rx ; 

End 

 

Function T = eulerRatesMatrix(phi, theta) 



62 
 

       % maps body rates [p;q;r] to Euler angle rates [phi_dot; theta_dot; psi_dot] 

      % [phi_dot; theta_dot; psi_dot] = T * [p; q; r] 

    T = [ 1, sin(phi)*tan(theta), cos(phi)*tan(theta) ; 

           0 , cos(phi),           -sin(phi); 

           0 , sin(phi)/cos(theta), cos(phi)/cos(theta)    ;]  

End 
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Appendix 3  

Calculation Lyapunov Function 

 

Function [V, Vdot] = computeLyap_quad3D(X, m, I, Kp_pos, Kp_att, p_ref, v_ref, psi_ref, 

Tcmd, tau) 

 %X: current state 

P = X(1:3); v = X(4:6) ; 

Phi = X(7); theta = X(8); psi = X(9) ; 

Omega = X(10:12) ; 

 

 %errors 

E_p = p – p_ref ; 

E_v = v – v_ref ; 

E_att = [phi; theta; psi] - [0;0;psi_ref] ; 

 

 %Lyapunov candidate (energy-like) 

V = 0.5*m*(e_v'*e_v) + 0.5*e_p' * Kp_pos * e_p + 0.5 * omega' * I * omega + 0.5 * 

e_att' * Kp_att * e_att ; 

 

 %compute Vdot numerically using gradient * f (approx) 

 %Build grad V components 

dV_dp = Kp_pos * e_p ; 

dV_dv = m * e_v ; 

dV_datt = Kp_att * e_att ; 

dV_domega = I * omega ; 

 



64 
 

 %compute state derivative f (same as in dynamics but without needing full function 

call) 

 %We need p_dot = v 

P_dot = v ; 

 

 %get R and gravity vector (use rotation as In dynamics) 

R = rotationMatrixFromEuler(phi, theta, psi) ; 

Grav = [0;0;-9.81] ; 

 

 %approximate drag ignored here (since we don't have D here) - acceptable for Vdot 

sign check 

V_dot = (1/m) * (R * [0;0;Tcmd]) + grav ; 

 

  %omega_dot approx from tau and I (neglecting cross term for simplicity here) 

Omega_dot = I \ (tau – cross(omega, I*omega)) ; 

 

 %e_att_dot approximate via Euler rates matrix 

Teta = eulerRatesMatrix(phi, theta) ; 

Att_dot = Teta * omega ; 

 

 %form f vector 

F = [p_dot; v_dot; att_dot; omega_dot] ; 

 

 %gradient vector In state ordering [p; v; att; omega] 

gradV = [dV_dp; dV_dv; dV_datt; dV_domega] ; 

 

Vdot = gradV' * f; % scalar 
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End 

 

 %helper functions (repeat) 

Function R = rotationMatrixFromEuler(phi, theta, psi) 

    Rz = [ cos(psi) -sin(psi) 0; sin(psi) cos(psi) 0; 0 0 1] ; 

    Ry = [ cos(theta) 0 sin(theta); 0 1 0; -sin(theta) 0 cos(theta)] ; 

    Rx = [1 0 0; 0 cos(phi) -sin(phi); 0 sin(phi) cos(phi)] ; 

    R = Rz * Ry * Rx ; 

End 

 

Function T = eulerRatesMatrix(phi, theta) 

    T = [ 1, sin(phi)*tan(theta), cos(phi)*tan(theta) ; 

           0 , cos(phi),           -sin(phi); 

           0 , sin(phi)/cos(theta), cos(phi)/cos(theta)    ;]  

End 
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 الملخص

 

التفاضلية            المعادلات  من  الخطية  غير  الأنظمة  استقرار  ندرس  العمل  هذا  في 

ثابتة الرتبة الأولى بمعاملات  ندرس استقرار   العادية من  لذلك  ليبانوف.  بإستخدام دوال 

هذه الأنظمة بشكل عام، ثم نقدم بعض المفاهيم الأساسية بخصوص نقطة التوازن وأنواع  

الاستقرار بمعنى ليبانوف، بالإضافة إلى بعض نظريات ليبانوف التي تساعدنا في  تحليل 

دراسة سلوك النظام  من  مكننا  تالاستقرار بإستخدام دوال ليبانوف. باستخدام هذه المنهجية  

لتحليل استقرار طائرة بدون   المنهجية  لقد طبقنا هذه  إيجاد حلول صريحة للنظام.  بدون 

 ( الأبعاد  ثلاثي  الفضاء  في  يتضمن  D-drone3طيار  خطي  غير  نموذج  باستخدام   )

الدوران زوايا  إلى  بالإضافة  الثلاثة  المحاور  طول  على  الانتقالية  كل   الحركة  حول 

 كل ذلك بأمثلة.      ناوضح  محور.
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