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By
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Abstract

A series of compounds (I-XIII) were synthesized by reacting ethyl 2-
oxocyclopentane-1-carboxylate (15) or ethyl 2-oxocyclohexane-1-
carboxylate (23) with various diamines, including ethane-1,2-diamine (66),
benzene-1,4-diamine (68), hydrazine hydrate ( 67), benzidine (70), N*, N3-
bis(2-aminoethyl) malonamide ( 72 ), malonohydrazide (71), and piperazine
(69). Most derivatives (I, II, III, VI, VII, VIII, X, XIII) adopted enamine
structures via a 2:1 reaction ratio, whereas compounds IX and XI exhibited
distinct structural frameworks due to a 1:1 reaction pathway. Notably, the
reaction of B-keto ester (15) with hydrazine hydrate yielded enamine III as a
minor product and pyrazolone IV as the major derivative, while the
analogous reaction with compound (23) exclusively produced pyrazolone V.
Additionally, the reaction of compound (23) with malonohydrazide afforded
an azine derivative (XII). All syntheses proceeded under mild conditions
with moderate yields, and the structures were characterized using melting
point, TLC, IR, MS, 'H-NMR (with D2O exchange), *C-NMR, and APT
analyses. Preliminary screening revealed antimicrobial activity in selected
derivatives. Evaluation of antibacterial activity and molecular docking

revealed that some compounds exhibited inhibitory effects.



Chapter 1

Introduction



1.1. Introduction

Esters act as important functional groups frequently observed in organic chemistry. One
of the most common structural components in synthesizing different chemical molecules
is the ester bond. In addition to condensing alcohol and acid to make esters, B-ketoesters
have gained considerable attention due to their electrophilic and nucleophilic reactive
sites, which can be utilized for synthesizing a wide range of complex natural products
(Clemens & Hyatt, 1985; Witzeman & Nottingham, 1991). B-Ketoesters have been
produced by reacting to diketene with alcohols (Rao & Sivakumar, 2006), or by using
Claisen condensation to condense two esters in a basic medium (Fujita et al., 1997).
Because diketene is highly reactive, caustic, and challenging to handle, its use as a starting
material is limited. Another technique for synthesizing various commercial and non-
commercial B-ketoesters is transesterification (Parmar et al., 1992). For over a century,
scientists have been intrigued by the transesterification process, which produces [3-
ketoesters used as building blocks for various medicinal compounds. This reaction is
simple, reliable, and involves widely available methyl/ethyl B-ketoesters. It substitutes an
alkoxy group with an alcohol to create a new ester, making it valuable for synthesizing
B-ketoesters that are hard to obtain commercially (Otera, 1993). The reaction has been
extensively studied for applications in polymers, medicines, and bioactive substances
(Niu et al., 2019). Recently, the transesterification reaction has become an important step

in drug synthesis (Yadav et al., 2007)

0 0
+ He— —_— + -
)J\/U\o/ C,H;—OH _— )J\/U\o/\ H;C— OH

(1) (2) (3) (4)

1.2. Synthesis of p-ketoesters

In organic chemistry, [B-ketoesters are strong synthons that can be essential for
synthesizing several bioactive heterocyclic compounds. Numerous methods are available

for the increase of B-Ketoesters, some of which are mentioned below.



1.2.1. Claisen Condensation

German chemist Rainer Ludwig Claisen is well-known for his pioneering work on the
condensation of carbonyl compounds and sigmatropic rearrangements (Claisen &
Claparéde, 1881; Claisen, 1887). He was the first to synthesize B-ketoesters under
fundamental conditions. In the Claisen condensation reaction, B-ketoesters or B-diketones
are produced when a carbon-carbon bond forms between two distinct esters orbetween a

carbonyl compound and an ester

0 0
0 O T -
1) NaOCH,
+ ; N t H,c-0H
\)J\O/ \)J\O/\ —_— o 3
2) ;0"

(5) (6) (7) (4)

1.2.2. Mixed or Crossed Claisen Condensation

An enolizable ester or ketone molecule combines with another non-enolizable ester
molecule to generate 3-ketoesters in a process known as mixed Claisen condensation or

crossed Claisen condensation reaction (Claisen, 1887).

O 8] (0] 0]

1) NaOCH,CH,4

+ E o

., BN
2) H,0

(8) (9) (10)
1.2.3. Dieckmann condensation

Dieckmann condensation is an intramolecular condensation catalyzed by a base
(Schaefer & Bloomfield, 2004; Pallenberg, Dobhal, & Pandey, 2004). German scientist
Walter Dieckmann developed a diester condensation, sometimes referred to as an
intramolecular Claisen condensation, to synthesize cyclic B-ketoesters (Dieckmann,
1894). Five- or six-membered cyclic B-ketoesters are more efficiently prepared using the
Dieckmann condensation (Scheme 6). Typically, sodium alkoxide in an alcoholic solvent
facilitates the reaction. By removing the alkoxy group from the ester, the diester reactant
undergoes internal cyclization under basic conditions to form cyclic B-ketoesters in this

Dieckmann condensation process



O o
OR
oR Base . é/‘("" + ROH
0]
(11) R=CH, (13) R=CH; (4)R=CH,
(12)R =C,Hq (15) R=C,H, (2)R=C,H;

1.3. Synthesis of cyclic five and six-membered rings
The synthesis of ethyl 2-oxocyclopentane-1-carboxylate (15) was carried out by
reacting cyclopentanone (14) with diethyl carbonate (16) in the presence of sodium

hydride, using toluene as a solvent at 100 °C for 2 hours (He et al., 2018).
0

0 (0] NaH P
+ - 9
g /\OJ]\O/\ ¢ O
oluene, 100 °C, 2 h

Q

(14) (16) (15)

The synthesis of ethyl 2-oxocyclopentane-1-carboxylate (15) can also be achieved by
dehalogenation of a-halo ketones and esters (17) and (18), catalyzed by 1-methyl-3-
propylimidazolium tetrafluoroborate (Ranu,Chattopadhyay, & Jana, 2007)

F
o __N/\\+ F-B-F o
X =N !
q*“ - q*““
[9) 9)
(17) X=Br (15)

(18)X=1

The present methodology, employing indium (III) chloride as a catalyst, provides a
straightforward, efficient, and versatile approach for protecting various aldehydes and
ketones by forming 1,3-dioxolanes and dialkyl acetals. Furthermore, the same catalyst

has been successfully utilized for the deprotection of both dioxolanes and acetals in an



alternative solvent system (Ranu, Jana, & Samanta, 2004)

s 0
9 9. o InCl;y (5mol%) P
+ - 9
X MeOH-H,0 (1:1),80°C o
(19) (15)

2-Carbethoxycyclopentanone (15) was produced by Dieckmann cyclization of diethyl
adipate (20) in the presence of sodium in toluene (Achanna & Suresh, 2013)

(o]
@ Na N
\/O\"/\/\)l\o/\ . o
toluene
[e] Q
(20) (15)

synthesis of ethyl 2-oxocyclohexane-1-carboxylate (23) was achieved by reacting ethyl
3-oxohex-5-enoate (21) with bis(cyanomethyl)palladium(IV) chloride (22) in the
presence of trimethylsilyl chloride, indioxane at 25 °C (Pei & Widenhoefer, 2002)

CN (0] [0}
a o I/ Si(CH; );Cl
/\)]\/u\ A~ t /T hemd - 0™
o NC @ dioxane, 25 °C
(21) (22) (23)

The reaction of cyclohexanone (24) with diethyl oxalate in the presence of sodium
ethoxide, followed by pyrolysis with a catalytic amount of ground iron powder/glass wool

at 170 °C gave ethyl 2-oxocyclohexanecarboxylate (23) in 45 % yield. (Achanna &

Suresh, 2013)
(0] (0] o)
NaOC,Hs A(COOC;Hy), 0
Fe /glass wool 170 °C
(24) (23)



The reaction of one equivalent of ketones (24), an equimolar mixture of CaCOs/CaO, one
equivalent of acetyl trimethyl ammonium chloride, and one equivalent of ethyl
chloroformate (25) was carried out in a flask containing dioxane to yield ethyl 2-

oxocyclohexane-1-carboxylate (23) with a 95% yield after 3 hours (Pazdera & Simbera,
2011).

P
0 Nt o o

s} | ~
+ 0"
Cl [5)
dioxane

(24) (25) (23)

\
/
Y

1.4 The reaction of five and six-membered rings
The compound (26) 2-(methylthio)-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-ol was
prepared by the reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) with 2-methyl-2-

thiopseudourea hemisulfate salt in sodium bicarbonate (Aware et al., 2015)

H,0 H

N
"
HO-S-0OH Y/
o HO
/
N on
o) i D=NH NI,
Y
H

P NT
o -
d‘\ o \s)\\rx'l

o A
(15) (26)

Cerium Oxide Nanoparticles are employed as a mild and neutral catalyst that can be easily
synthesized at room temperature and reused multiple times. A reliable protocol has been
developed for the selective bis-Michael addition and mono-allylation of active methylene
compounds. These reactions are carried out under mild conditions in aqueous media at

room temperature (Banerjee, 2015).



R
0 0 o
CeO, NPs
. _R 2 o
o R - AL o
RT , H,0 >

(27) R=COMe (30) R=COMe
(15) (28) R=COOMe (31) R=COOMe
(29) R=CN (32) R=CN

Ethyl-2-hydroxycyclopentane-1-carboxylate (33) was prepared by solution of 2-oxo-
cyclopentanecarboxylic acid ethyl ester (15) in ethanol, cooled to 0 °C, was treated with
98% sodium borohydride. The reaction mixture was stirred at 0 °C for 30 min (Sarabu et

al., 2012).
0

o 0
NaBH,, EtOH,84%. o™
o7\ '

OH

(1s) (33)

The reaction between ethyl 2-oxocyclopentane-1-carboxylate (15) and urea (34) was
carried out under microwave irradiation at 135 °C without the use of any solvent,
resulting in the formation of 1,5,6,7-tetrahydro-2H-cyclopenta[d]pyrimidine-2,4(3H)-
dione (35) with a 72% yield (Burgula, Radhakrishnan, & Kundu, 2012)

H
fo) 5) N
o o ﬁ/
)J\ MW, 135°C |
> HN
o\ + H,NT NH, i
solvent free o

(15) (34) (35)

The o-substituted PB-keto ester derivatives (37a—d) were synthesized using ethyl 2-
oxocyclopentanecarboxylate (15) as a starting material. The details of a-alkylation
reactions with various alkyl bromides, 1 equivalent of the corresponding alkylating
reagent, and potassium-tert-butylate as a base were used under reflux. The best yield

(92%) was achieved with propargyl bromide (Tzvetkov et al., 2008).



(0] 0 R
é/l /\ R-Br > dko/\
0
base

(15) (37)ad

36a 36b 36¢ 36d

The synthesis of (41) Uracil derivatives and (42) thymine derivatives and (43) cytosine

derivatives from the reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) with amide
derivatives (38), (39), and (40) in ethanol or methanol, TFA, 90 °C in a sealed tube, 1-3
h (Bouhadir et al., 2016).

R,
R,

R
j\/ ! 2 A N)TRZ
o N EtOH
" é/‘(o/\ T o)\w //
j\ TFA, 90 C in sealed tube, 1-3 h j\ 0, fe)
. NH,
o N Ny
(15) o \5

(38) R;=0H.R,=H @1)R, =0, R, =H
(39) R, = OH, R, = CH, (42)R, = OH, Ry = CH,
(40) R;=NHy, R, =H (43)R,=NH, R,=H

Their preparation proceeds using the reaction between cyclic B-ketoesters (15) and
hydrazine derivatives (44,45) and one equivalent of tetrahydrofuran or methanol, at room

temperature for 4 h, leading to the corresponding hydrazones (46,47) (Attanasi et al.,
2006).

o o) 0] NaOAc (1 equiv), MeOH, r.t o/\
~N 7 R)L A > s N__R
° ! THF, r.t N’ !

(15) (44) R,=NH, (46 ) R, = NH,
: (45)R, = Ot - Bu (47)R; = Ot-Bu




All secondary enamines were synthesized following the procedure reported in the
literature (Li et al., 2019) , A mixture of primary amines and B-ketocarbonyl compounds

was treated with iron(III) trifluoromethanesulfonate..

o
(o]
o Fe (OTf), o”
+ R-NH, — = 5
0N\ neat R
N
H
(15) (49) a-e
R = >|\/\N/\ O ~ | ©
48-a 48-h 48-¢ 48-d 48-e

Amine was added dropwise to the suspension of silica gel for diketone in the

dicarbonylic compound (and the resulting mixture was stirred at room temperature

(Gao, Zhang, & Xu, 2004).

(0]
o
N Silica gel 0/\
+ R-NH, >
0N\ R.T R
N
H

(15) (51) a-e

48-d 48-e 50-a 50-b 50-¢

brominating the compound (23) with bromine in diethyl ether, which selectively led to

the formation of the monobromo derivative (Jourdan et al., 2013).

O (0] OH O

Brl,
B
0" EE— ) 0"
E6O L 97%

(23) (52)



B-Keto amide (56 -58) can be synthesized by reaction of some secondary amines in 4-

dimethylaminopyridine (Meyer, Piva, & Pete, 2000).

HN\ R
()/\ —RZ_,.. I\IJ !
DMAP R,
(23) (56 -58)
3 \
R= O E j )\ J\
N
0 H
53 54 55

A mixture of ethyl 2-oxocyclohexanecarboxylate (23) and approximately 7 N ammonia
(50a) solution in methanol was stirred in a closed vessel at room temperature for 24

hours, yielding (97%) of the known compound (51a) (Bobileva et al., 2014).

0 0 NH, O
o
o/\ MeOH , 97% . 0/\
+ NH, >
(23) (50a) (51a)

The reaction between cyclic B-ketoesters (23) and hydrazine derivatives (44, 45) 1
equivalent, in tetrahydrofuran or methanol, at room temperature for 4 hours), resulted in

the formation of the corresponding hydrazones (59, 60) (Attanasi et al., 2006).

(o]
0 0 NaOAc (1 equiv), MeOH, r.t
)(i.\ (1 equiv) o 0
V H

é/u\o/\ 4 R, E,T\Hz THE. et \N¢N\"/Rl

(0]

(23) (44)=R,,NH, (59)=R,,NH,
) (45)=R;, Ot-Bu (60) =R;, Ot-Bu

The ethyl 2-((4-methoxyphenyl) amino) cyclohex-1-ene-1-carboxylate (62) was
synthesized by the reaction of ethyl 2-oxocyclohexane-1-carboxylate (23) and 4-
methoxyaniline (61) (Attanasi et al., 2006).

10



Y

9}
o o _
HaN POCI,, cat. PTSA \©\
o0 NH O
+
o~ 120C° @)‘\O/\

(23) (61) (62)

The reaction of ethyl 2-oxocyclohexane-1-carboxylate (23) with 4-(2-aminoethyl)
benzene-1,2-diol (64) in ethanol at 90 - 100°C; for 2h to give the 1-(2-((3,4-
dihydroxyphenethyl) amino) cyclohex-1-en-1-yl) butan-1-one (65) (Cuny et al., 2010)

(o] o] J
H,N OH ]
/\ EtOH OH
o . \/\@ _ mom .
OoH 90 - 100°C, 2h
N

( 23) (64) (65)

1.5 Biological activity of the enamine compounds
Enamine compounds are widely recognized for their broad biological activities, which
can be attributed to their distinctive structural features, including a nitrogen-containing
group conjugated with a carbon-carbon double bond. This structural configuration
enables enamines to function as crucial intermediates in organic synthesis, facilitating
strong interactions with biological targets. Numerous studies have demonstrated that
enamine derivatives exhibit a wide range of pharmacological properties, such as
antibacterial, antifungal, antiviral, anti-inflammatory, and anticancer activities.
Specifically, their antibacterial activity is often linked to their ability to disrupt microbial
enzymes or interfere with DNA synthesis. Furthermore, the presence of electron-donating
or electron-withdrawing substituents on the enamine structure significantly influences
their potency and selectivity. Given these attributes, enamine-based compounds are
regarded as promising candidates for the development of new therapeutic agents,
particularly in response to the growing challenge of antibiotic

Resistance (Singh & Mishra, 2021).

11



1.6 Molecular Docking

Molecular docking is a computational technique used to predict the preferred orientation
of one molecule (typically a small drug-like compound) when bound to a second
molecule (usually a protein or enzyme) to form a stable complex. This method plays a
critical role in drug discovery and structural molecular biology by providing insights

into molecular interactions and binding affinities.
The goal of molecular docking is to:

1. Predict the binding mode of a ligand (small molecule) to a receptor (target
protein).

2. Estimate the binding affinity, indicating how strongly the ligand binds to the
target.

3. Identify potential lead compounds in drug development.
Docking involves two main components:

o Search algorithm: explores possible orientations and conformations of the ligand
within the binding site.
e Scoring function: evaluates and ranks these poses based on predicted binding

energy or other physicochemical criteria.

Molecular docking is widely used in virtual screening, structure-based drug design, and
understanding biomolecular interactions. Popular docking software includes AutoDock,

Molecular Operating Environment (MOE), Glide, and Dock (Lengauer & Rarey, 1996)

12



Chapter 2

Discussion



2. " RESULTS AND DISCUSSION”

This work begins with an overview of enamine and imine chemistry, focusing on the
synthesis of enamines through the reaction of cyclic B-ketoesters with various primary
and secondary amines. In these transformations, amines served as nucleophiles, while
cyclic B-ketoesters acted as electrophiles, enabling the formation of a new series of
enamine-containing compounds (I-XIII). Specifically, ethyl 2-oxocyclopentane-1-
carboxylate (15) and ethyl 2-oxocyclohexane-1-carboxylate (23) were reacted with a
range of amines—including ethane-1,2-diamine (66), hydrazine hydrate (67), benzene-
1,4-diamine (68), piperazine (69), benzidine (70), malonohydrazide (71), and N',N3-
bis(2-aminoethyl)malonamide (72)—under neat conditions at room temperature and
under reflux in ethanol. Notably, no reaction was observed between ethyl 2-
oxocyclohexane-1-carboxylate and either piperazine or N',N3-bis(2-

aminoethyl)malonamide under the tested conditions.

O

\H NI
neats I{ T

(Vlll)

Scheme (2.1) Reaction of Ethyl 2-oxocyclopentane-1-carboxylate (15) with different diamines
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(VII)

2 . . I
NH
HN 0

(ypp1) XU
R
Z E

< (X)

(0] O

Scheme (2.2) Reaction of Ethyl 2-oxocyclohexane-1-carboxylate (23) with different diamines

15



The Reaction Mechanism:

It is well-known that primary amines typically form imines, while secondary amines form
enamines. However, some studies have suggested that primary amines can also form
enamine compounds, particularly under specific conditions. In the scheme ( 2.3 ), we
observed the mechanism of compounds (I, II, III, IV, V, VIII, IX, X, XII, XIII). In some
of these compounds, the reaction occurred in a 1:1 and 2:1 ratio. Additionally, both imines
and enamines were formed simultaneously, with imines appearing on one side and

enamines on the other .

¢
3,

<
o
}“o)o

N
R/4"R _—

o \ A 0 9uy N
0 Ry -0
R,

. R H i H

-N\—H ,N\
Ry Ri R

0 H 0 HO N-R, H 0 HO N-R,
Bl T e
!
0’\ Rz/NsRl /o \ /o
RZ’N‘R
n=1,2

Scheme (2.3) The proposed mechanism of synthesis of compounds (L, IL, IIL, IV, V, VIII, IX, X,
XII, X1II)

16



As we notice in schemes (2.4) and (2.5), the enamine was formed, and then the ester group

was attacked, and a heterocyclic ring was formed.

h

0 \
0 Ny,

NH,
HN @

0 H

H o
( 0 ¢ HW‘J’\ 0 HZIE*E—NH2 H 0 HO N-NH,
"
o)
%’\ M, /0 | /0
H’N"N'Hz

o™\
0
H NH
"-H —> [
|+ (%
N
DY 0

n=1,2

Scheme (2.4) The proposed mechanism of synthesis of compounds (VI, VII)
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BN m NH, BN NH, N W NH,
H I
0 0 0 0 Hoo o0
0
,NH,
N 0 0 0 0
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The reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) and ethyl 2-oxocyclohexane-
I-carboxylate (23) with ethylenediamine under neat conditions, and with p-
phenylenediamine under reflux, led to the formation of bis-enamine compounds (I), (II),
(III), and (IV). Interestingly, all four reactions resulted in the formation of a single product

in each case, yielding only one isolated compound per reaction.

The IR spectrum of compound (I) in figure (2.1a) determined the compound's identity as
a sharp strong absorption band at 1591.53 cm™!' (C=C) and a sharp strong absorption band
at 1644.40 cm™! due to the carbonyl group of the ester function and a peak sharp at 3317.45
cm! ! due to the NH. and peak at 2945.33 cm ™ 'CH aliphatic.

The 'HNMR spectrum of compound (I) in CDCl; in figure (2.1b) showed a triplet signal
at 1.26 ppm for the protons (24, 19) , A quartet signal at 4.12 ppm for protons (18, 23 )
because of the deshielding effect of an oxygen atom, which confirms the presence of the
ethoxy group. Also, the singlet signal at 3.26 ppm is characteristic of protons (7, 8 ), and
at 2.41 ppm, protons of cyclopentane (1, 11, 3, 13) as a doublet of doublet for this signal.
and the protons of cyclic (2, 12 ) appear as a quintet at 1.74 ppm. The NH signal appears

as a singlet at 7.43 ppm, forming an enamine compound.

The D0 spectrum in figure 2.1c ) showed a disappearing proton for NH at 7.43 ppm and
a new signal of hydrogen attached to (OD) at 4.72 ppm.
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Carbon magnetic resonance spectral data of the compound (I) in figure (2.1d) is consistent
with the proposed structure in which the carbons (19,24) appear at 14.68 ppm, followed
by a signal at 20.88 ppm for carbons (12, 2). and carbons (3, 3) at 29.07. Carbons (11, 1)
appear at 31.94 ppm, and signal at 64 ppm for carbons that are attached to nitrogen atoms
(7, 8), and the signal at 58.44 ppm for the carbons (18, 23), the olefinic carbon that is
attached by the carbonyl of ester (14,4) appears at 93.82 ppm. followed by a signal at
164.16 for olefinic carbon that is attached to an amino group (10, 5). while the carbonyl
group of ester (15, 20) at 168.45 ppm.

The APT technique in Figure (2.1e) showed only carbons (19, 24) at down, representing
CHs, and the remaining carbons appeared up representing five CH» and three quaternary

carbons

Further support of the compound (I) was obtained from its mass spectrum data in Figure
2.11). the possible fragmentation pathways are shown in Scheme (2.6) . The compound
(I) gives an intense molecular ion peak at 336(65%). The molecular ion peak has two
main fragmentation routes (2.4). The first route involves eliminating of C2HsO' to give
an intense peak at m/z 245 (7%). The other route of fragmentation is the expulsion of
CoH14NO>'from the molecular ion peak to the formation of cation as an intense peak at
m/z 168 (15%), followed by loss of C2HsO", and proton radicals as a molecule to give an
intense peak at m/z 122 ( 100%) as base peak, and followed then the of CO and proton
radical to provide a peak at m/z 94 (10%), All fragments are shown in Scheme (2.6) .

The IR spectra of compounds (II), (III), and (IV) exhibit similarities to that of compound
(D). However, compounds (II1) and (IV) show distinct absorption bands corresponding to
the (=CH) stretching vibration at 3055.82 cm™ and aromatic carbon stretching at 1572.24
cm ' and 1511.67 cm™, The 'H-NMR,"*C-NMR, APT, and D,O spectrum for compounds
(1), (IIT), and (IV) is similar of compound (I). different signal protons and carbons of
cyclohexanone that appear in excess compared to cyclopentanone in aliphatic region, and
differently for protons that are attached to the amine give the doublet of doublet signal at
3.29 ppm for compound (II), a result non-magnetic equivalent because rotation around
a C—o bond, and Compounds ( III) and (IV) protons of aromatic that appear at region 6-
8 ppm and carbons aromatic appear at region 110-140 ppm, The fragmentation of
compound (II) , (IIT) and (IV) shows in scheme (2.7), (2.8) and ( 2.9), all these spectrum
see in appendix page (89-112)
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The reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) with hadrazine hydrate in
neat conditions to produce two products, the major product of cyclic enamine 82% (V)
and the minor product of bis-amine (14%) (VII), and the reaction of ethyl 2-
oxocyclohexane-1-carboxylate (23) with hadrazine hydrate under neat conditions to
produce one product of cyclic enamine, and The reaction of ethyl 2-oxocyclopentane-1-
carboxylate with benzidine under reflux, led to the formation of two product, the major
product of bis-enamine (IX) and the mainor product of mono-enamine (VIII) , while the
reaction ethyl 2-oxocyclohexane-1-carboxylate (23) with benzidine to produce one

product of mono-enamine (X).

The IR spectrum of compound (V) in figure (2.5 a) determined the compound's identity
as a sharp strong absorption band at 1604.55 cm™! (C=C) and a sharp strong absorption
band at 1647.36 and 1732.91 cm™ due to the ester function and band sharp at 3259.78
cm due to the NH. and 2966.13 cm 'CH aliphatic

The ! H NMR spectrum of compound (v) in CDCI 3 in figure (2.5 b) showed a two triplet
signal at 1.30 ppm for the protons (10, 22) as non-equivalent protons. A two-quartet signal
was shown at 4.26 for protons (9, 21 as non-equivalent protons), which confirms the
presence of the ethoxy group. Also, the triplet signals at 3.15 ppm for protons (14). and
at 1.83 to 3.15 ppm protons of cyclopentane (1, 2, 3 15, 16, 17). The NH signal appears
as a singlet at 10 ppm. From this information we note that it has indeed been formed of

enamine compound.
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The D»0O spectrum in figure (2.5¢) showed a disappearing proton for NH at 10 ppm and
a new signal of hydrogen attached to (OD) at 4.76 ppm.

Carbon magnetic resonance spectral data of compound (V) in figure (2.5 d) showed a
signal of carbons (10,22) appearing at 14.28 and 14.76 as non-equivalent carbon. And
carbons (21, 9) appear at 61.36 and 59.15 ppm as non-equivalent carbon, which confirms
the presence ethoxy group. a seven signal of cyclo pentane at region 23.22, 25.91,
27.05,29.36, 32.06, 37, 38.06 ppm. The olefinic carbon attached by carbonyl of ester (4)
appears at 96.15 ppm. while the olefinic carbon that connected with the enamine
appeared (5) at 156.28 ppm. Also carbons (13) appear at 161.20 ppm, finally carbonyl
group of ester(6, 18) at 169.42 and 172.53 ppm as non-equivalent carbon

Further support for the structure of compound (V) was obtained from its mass
spectrometry data shown in Figure (2.5¢). The possible fragmentation pathways are
depicted in Scheme 2.10. The compound (IV) produces a strong molecular ion peak at
m/z 308 (72%). This molecular ion peak undergoes two main fragmentation routes
(Scheme 2.10 ). The first pathway involves the elimination of a C2HsO" group, resulting
in an intense peak at m/z 263 (19%), followed by the further elimination of a CoHs0O"
group, leading to a peak at m/z 216. This is followed by the loss of a CO" group, giving
the base peak at m/z 188 (100%). The second fragmentation pathway involves the
expulsion of a CgH13N20>" group and an ethyl radical, leading to the formation of a radical
cation with an intense signal at m/z 108 (15%). The remaining fragments are shown in

Scheme ( 2.10).
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NH 12

IR analysis in Figure (2.6a) indicates that the compound exists predominantly in the
tautomeric form of 1,4,5,6-tetrahydrocyclopenta[c]pyrazol-3-ol. This is evidenced by a
broad absorption band in the range of 3400-2500 cm™, attributed to the O—H stretch
involved in intramolecular hydrogen bonding. Additionally, an absorption at
approximately 3000 cm™ corresponds to aliphatic C—H stretching. A strong band
observed at 1590 cm™ is assigned to the C=N stretching vibration, while the band at 1529

cm™! is characteristic of C=C stretching

The 'H-NMR spectrum of compound (VI) in DMSO-ds in figure (2.6 b) showed a
multiplet signal at 2.46 ppm for the protons of cyclopentanone (1, 2, 3) as non-equivalent
protons. At 10.51 ppm, acidic protons appear as a broad singlet signal for the nitrogen
atom (11, 12). It is also noticed that the absence of peaks of the ethoxy group, which

means that the ester group has been attacked and the pyrazolone ring has been formed.

Carbon magnetic resonance spectral data of compound (VI) in figure (2.6 ¢) showed a
signal of carbons (2) appearing at 22.62 ppm. followed by signal carbon (3) appear at
24.48 ppm. while at 30.47 ppm appears signal of carbon (1). The olefinic carbon attached
by carbonyl (4) appears at 107.57 ppm. while the olefinic carbon that connected with the
amine appeared (5) at 153.75 ppm. Finally carbonyl group of amide(6) appear at 154.50

ppm
The APT technique in Figure (2.6 d) showed all carbons (1, 2, 3,4, 5, 6) in the up .

The IR, 'H-NMR, '3C-Nmr, and APT, spectra of compounds (VII) are similar of
compound (VI). different signal protons and carbons of cyclohexanone that appear in
excess compared to cyclopentanone in the aliphatic region. The fragmentation of

compound (VII) is shown in scheme (2.11) , all these spectra are seen in the appendix

page (118-127)
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The IR spectra of compounds (VIII), (IX), and (X) display general similarities to that of
compound (I), but they also exhibit distinct absorption bands attributed to the stretching
vibration of the (=CH) group and aromatic C=C bonds. Furthermore, the 'H NMR, *C
NMR, APT, and D-O spectra of compounds (VIII), (IX) and (X) are comparable to that
of compound (I), with notable differences. In the aliphatic region, signals corresponding
to the protons and carbons of the cyclohexanone ring appear more than those of the
cyclopentanone ring. Additionally, aromatic protons resonate in the region of downfield
ppm, while aromatic carbon signals are observed in the 110-140 ppm range, The
fragmentation of compound (VIII), and (X) shows in scheme (2.12), (2.13) and , all these
spectrum see in appendix page (128-140)
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The reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) with malonohydrazide
resulted in the formation of multiple products, which could not be effectively separated
by liquid-liquid extraction. In contrast, the reaction of ethyl 2-oxocyclohexane-1-
carboxylate (23) with malonohydrazide yielded a single product, identified as the cyclic
enamine compound (XI). The proposed reaction mechanism for the formation of

compound (XI) is illustrated in Scheme (2.5).

The ! H NMR spectrum of compound (XI) in DMSO-ds in figure (2.11 a) showed a
multiplet signal at 1.63 ppm for the protons (3,2,16,17). A triplet siganle was shown at
2.22 for protons (4, 14 as equivalent protons) because of the resonance effect, and the
absence of an ethoxy group, which confirms the attack on the ketone and then of the ester.
Also, the triplet signal at 2.43 ppm has for protons (1,18). The NH signal (9, 10, 19, 20)
appears as a singlet and is broad at 10.27 ppm. From this information, we note that it has

indeed been formed of an enamine compound.

The D20 spectrum in figure (2.11b) showed a disappearing proton for NH at 10.70 and a

ncw

Carbon magnetic resonance spectral data of compound (XI) in figure (2.11c) showed a
signal of carbons (2,17) appearing at 19.32 ppm as equivalent carbon. Followed by a
signal of at 21.74, for carbons (3, 16) as equivalent carbon. and at 22.72 ppm appear
signal of carbon (1, 18) as equivalent carbon. The carbons (4, 15) appear at 23.30 ppm as
equivalent carbon. followed, the olefinic carbon attached by carbonyl of ester (12 ,6)
appears at 99.03 ppm. while the olefinic carbon that connected with the amine appeared

at 140.54 ppm. finally carbonyl group of ester (7, 11) appear at 159.04 ppm.

The APT technique in figure (2.11d) showed all carbons in the up direction .
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The reaction of ethyl 2-oxocyclopentane-1-carboxylate (15) with Ni,N3-bis(2-
aminoethyl) malonamide resulted in one product of bis-enamine (XII) and one product
with piprazine (XIII) , while ethyl 2-oxocyclohexane-1-carboxylate can not react with
these amines because the cyclohexanone is low reactive than cyclopentanone a result ring
strain due to its non-ideal bond angles and torsional strain for cyclopentanone, The

spectrum analysis is shown in figure (2.12a), (2.12b), (2.13a), (2.13¢), ( 2.13d)

The ' H NMR spectrum of compound (XII) in DMSO-ds in figure (2.12 a) showed a
signal at 1.16 ppm as triplet for protons (31, 33). and at 4.03 ppm appears signal as a
quartet for protons (32, 30), which confirms presence ethoxy group in a compound. and
at protons of cyclopentane (24, 25, 26,3,4,5) in regions 1.65 to 2.54 ppm as multiplet.
And protons of (19,20 ,10, 11) appear in region 3.02 to 3.54 ppm as multiplet and
followed protons ( 13 ) appear as singlet at, Finally, protons for enamine (18, 16) appear

at 7.41 pm as singlet. followed by protons for (21, 9) as a singlet at 8.15 ppm.

Carbon magnetic resonance spectral data of compound (XII) in figure (2.12b) showed
that of the, a signal of carbons (33, 31) appeared at 15.16 ppm. Followed by the 3 signals
carbons (24, 25, 26, 3,4, 5), which appear at 20.87, 29 .47, and at 31. 93 ppm.and carbons
(19, 11) appear at 43.70 ppm. followed by carbons (20, 10) at 44 ppm. The carbon (13)
appears at 45 .93 ppm. followed by a signal at 58.12 ppm for carbons (30, 32). The olefinic
carbon attached by carbonyl of ester (23, 1) appeared at 91.83 ppm, while olefinic carbon
attached by carbonyl of amine (2 ,22) appeared at 165.24 ppm. then carbonyl of amide
(12, 14) is appeared at 167.62 ppm. Finally carbonyl of ester (6, 27) at 179.25 ppm.
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The IR spectrum of compound (XIII) is generally similar to that of compound (I), with

the notable absence of the NH stretching absorption band, which confirms the successful

formation of the bis-enamine structure. The 'H NMR, *C NMR, and APT spectra also

show overall similarity but with some distinct differences. In the aliphatic region, signals

corresponding to the protons and carbons of the piperazine ring appear more prominently

than those of the cyclopentanone ring. Additionally, a small peak is observed in the

upfield region, which is attributed to dynamic interconversion caused by rotation around

the sigma bond. The fragmentation of compound ( XIII) is shown in scheme ( 2.14)
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2.1. Anti-bacterial activity

The antibacterial activity of the synthesized compounds was evaluated against four
bacterial strains: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and
Enterococcus faecalis,using the well diffusion method.
Ciprofloxacin (100 pg/mL) was used as a positive control and exhibited large inhibition
zones (100 mm) against all tested bacteria, confirming the reliability and validity of the

assay.
Upon analyzing the results:

. All tested compounds displayed significantly lower antibacterial activity
compared to ciprofloxacin.

. Compounds L, IL, III, IV, V, XIII, demonstrated similar levels of activity, with
inhibition zones ranging between 5 and 8 mm, indicating weak antibacterial
effects against both Gram-negative and Gram-positive bacteria.

. Compound VI (1,4,5,6-tetrahydrocyclopenta[c]pyrazol-3(2H)-one) showed the
weakest antibacterial activity, with inhibition zones between 2 and 5 mm,
particularly against Pseudomonas aeruginosa and Staphylococcus aureus,
suggesting limited effectiveness.

. Compound VII (1,2,4,5,6,7-hexahydro-3H-indazol-3-one), despite containing
the biologically potent indazole moiety, exhibited only modest antibacterial
activity (4-5 mm) against all strains, indicating that further structural optimization

may be necessary to enhance its antibacterial properties.

Additionally, Gram-negative bacteria (E£. coli and P. aeruginosa) appeared relatively
more susceptible to the tested compounds compared to Gram-positive strains (S. aureus
and E. faecalis). This observation aligns with the known structural characteristics of
bacterial cell walls, where the thick peptidoglycan layer in Gram-positive bacteria limits

drug permeability and may contribute to reduced susceptibility.

Overall, although the tested compounds exhibited limited antibacterial effects, their basic
activity suggests that further structural modifications—such as introducing more polar
functional groups or enhancing cell wall permeability—may lead to the development of

more potent antibacterial agents.
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No of Bacteria Types
Compound
E.coli P.aeruginosa S. aureus E.faecalis
100 100 100 100
I 6 5 8 6
I 6 5 8 6
M 6 5 8 5
v 6 5 8 6
\Y 6 5 8 5
VI 4 2 2 5
Vi 5 4 4 4
Xl 6 5 8 6

Table2.1: Anti-bacterial result
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2.2. Docking results

Compound | Binding affinity for Escherichia Binding affinity for
coli (3uu2) receptor Staphylococcus aureus(1vqq)
receptor

I -6.5 -6.7
II -6.5 -7.2
I -7.2 -7.6
v -7.2 -7.2
\% -6.8 -74
VI -5.6 -5.6
VI -5.9 -6.3
XIII -6.9 -7.1

Table 2.2: Result of Molecular docking

This table shows that compound III has the highest binding affinity to the receptor 1VQQ,
while compound IV and III shows the best binding affinity towards the 3UU2 receptor.

Figure (2.14a) shows the 3D interaction between compound III and the IVQQ
RECEPTOR
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Figure (2.14b) shows the interacting atoms and the bonds between compound III and
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Figure (2.14c) shows the 3D interaction between compound IV and the 3uu2 receptor



TYR
B:300

Interactions

[:] van der Waals D Alkyl
- Unfavorable Bump D Pi-Alkyl

Figure (2.14d) shows the interacting atoms and the bonds between the compound IV

and the receptor
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2.3. Conclusion

In this study, a novel series of enamine derivatives was efficiently synthesized through
the condensation of ethyl 2-oxocyclopentane-1-carboxylate (compound 1) or ethyl 2-
oxocyclohexane-1-carboxylate (compound 2) with various diamines under mild
conditions, affording the target products in high yields. Structural characterization using
spectroscopic techniques—including IR, 'H NMR, *C NMR, and mass spectrometry—
confirmed the successful formation of the desired enamine scaffolds. The reactivity of
the starting materials was found to be strongly influenced by both the ring size of the
cyclic B-keto esters and the structure of the diamine reagents. Compound 23, derived from
the six-membered cyclohexanone ring, predominantly yielded single products when
reacted with ethane-1,2-diamine, 1,4-phenylenediamine, and benzidine, following 1:2 or
1:1 stoichiometries depending on the diamine. In contrast, reactions involving hydrazine
hydrate or malonohydrazide led to the formation of cyclic products due to their
bifunctional nucleophilicity, Compound 15, containing the more strained five-membered
cyclopentanone ring, exhibited significantly higher reactivity, which in certain cases led
to competing reaction pathways. For example, its reaction with benzidine afforded a
mixture of 1:1 and 1:2 adducts, whereas treatment with hydrazine hydrate resulted in both
pyrazolone and enamine derivatives. Nevertheless, reactions with other diamines
proceeded selectively to give single 1:2 adducts. These findings underscore the crucial
role of ring strain and steric hindrance in dictating the course of the reactions, with the
cyclopentane-derived compound (15) showing a stronger propensity for multiple addition
and cyclic product formation compared to the cyclohexane analogue (23) ,To evaluate the
biological potential of the synthesized compounds, eight selected derivatives were tested
for antibacterial activity against four bacterial strains—two Gram-positive and two Gram-
negative—at a fixed concentration of 100 ppm. The inhibition zones observed ranged
from approximately 5 to 8 mm. Among the tested compounds, the cyclic enamine
derivative displayed the lowest antibacterial efficacy. Complementary computational
studies were performed to assess the binding affinities of the synthesized compounds with
two previously identified target proteins using molecular docking techniques. The
compound derived from the reaction of p-phenylenediamine with cyclopentanone
exhibited the highest binding affinity, which is attributed to the presence of an additional
m-anion interaction that contributed to enhanced molecular recognition and stability

within the active site.
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Chapter 3

Experimental



3. Experimental
3.1. Instrumental:
3.1.1. Melting points:

Melting points (m.p) of the synthesized compounds were determined in capillary tubes

using a Stuart Scientific melting point apparatus and are uncorrected.
3.1.2. Chromatography:

Analytical glass and aluminum plates were used with Silica gel G or GF 254 (Merck). The plates

were run in the following systems:

1. Ethyl acetate.
2. Methanol — Hexane (different ratios)
3. Chloroform — Hexane (different ratios) , and examined under ultra-violet light

Model UV GL-58/50 Hz Lampe

3.1.3. 'TH-NMR

Proton magnetic resonance spectra were carried out in the Centre for Drug Discovery
Research & Development at Ain Shams University and proudly introduces
deuterochloroform (CDCI3) and hexadeuterodimethylsulfoxide (DMSO-ds) solutions, on
Brucker 400 MHz instruments, with chemical shift (0) expressed in ppm downfield from
tetramethyl silane as internal stand. The multiplicity of the signal is as follows: s (singlet),

d (Doublet), t (Triplet), q (Quartet), m (multiplet).

3.1.4. BC-NMR

BC-NMR spectra were carried out in the Centre for Drug Discovery Research &
Development at Ain Shams University, proudly using 100 MHz and an internal reference
3.1.5. IR-Spectroscopy:

IR (KBr) measurements were made and recorded on the National Research Centre -Douqi
. The positions of absorptions have been expressed in wave number units (cm™).

3.1.6 Mass spectroscopy

Mass spectroscopy was done using direct inlet in National Research Centre -Douqi mode

: El, Tonization voltage 70 ev
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3.2. Solvents and Chemicals:

The following solvents and chemicals were used without further purification. The list of

chemicals is shown in (Table 3.1).

Table (3.1): Solvents and chemicals used in the study.

Solvents and chemicals Molecular formula Company
Ethanol (99.9%) C:Hs0 MRS
Methanol (99.9%) CH.O Fisher

Chloroform (99.5%) CHCl: Euromedex
Acetone (99.5%) CH:;COCH3 Loba
Diethyl ether (98%) C2Hs0C2Hs CDH
Ethyl acetate (99%) C4Hs0O2 T-Baker
Hexane CeHia Sigma-Aldrich
ethyl 2-oxocyclopentane-1- CsH1203 Tel chemicals
carboxylate
Alfa Aesar
ethyl 2-oxocyclohexane-1-carboxylate CoH1403
malonic ester C3H40s. Sigma-Aldrich
Hydrazine hydrate N:H¢O Merck
ethane-1,2-diamine C:HsN: Acros Organics
Piperazine CsH1oN:2 Sigma-Aldrich
Benzidine Ci2Hi2N2 Tecl chemicals
benzene-1,4-diamine CsHsN: Alfa Aesar
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3.3.1 Reaction of cyclic beta-ketoesters with diamines.

General procedure:

Two equivalents of ethyl 2-oxocyclopentane-1-carboxylate or ethyl 2-oxocyclohexane-
1-carboxylate were added to one equivalent of the diamine and placed in a 100 ml beaker
without any solvent, and the mixture was stirred at r.t. The solid formed was filtered and
washed with ethanol, then dried on vacuum, giving a different color precipitate. The

precipitate was recrystallized from ethanol to give compounds (I, 11, V, VI, VII, XIII)

Table 3.2: The melting point, % yields and Color of synthesized
compounds(I-11I-V-VI-XIII)

Compounds Yield (%) m.p. (°C) Color Reaction.time
1 36 110°C White 3h
11 87 70-72 °C White 48h
\% 14 71-73 °C Yellow 72h
VI 82 72h
Dec at 245 °C yellow
A% 11 48 white )
Dec at 270°C 10min
white
XIII 85 113°C 24h
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diethyl 2,2'-(ethane-1,2-diylbis(azanediyl)) bis(cyclopent-1-ene-1-
carboxylate) (I).

(

(0] E‘E
\/\
O

Mo. Formula: CisH>8N>04(M.W = 336g/mol).

ZT
=7

FT-IR vu,:1591.53 cm™! (C=C), 1644.40 cm™! (ester CO), and 2945.33 cm !(CH
aliphatic), 3317.45 cm™' (NH amine)

TH-NMR (CDCl): § 7.43 (2H, S, NH), 4.12 (4H, q, CH,-CHs), 3.29 (4H, S, CH,-
NH),2.47 -2.41 (8H, dd, CHa), 1.79 — 1.74 (4H, m, CH,), 1.26 (6H, t, CH3-CH>)

BC-NMR(CDCl3): § 168.45 (CO), 164.16 (C=C-NH), 93.82, 58.49, 46 .00, 31.94,
29.07,20.88, 14.68

MS EI m/z: M*336, 168, 291, 245, 122, 94
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diethyl 2,2'-(ethane-1,2-diylbis(azanediyl)) bis(cyclohex-1-ene-1-
carboxylate) (II).

Mo. Formula: C;H3:N>04 (M.W = 364g/mol).

FT-IR vma: 1582.55 cm™! (C=C), 1637.54 cm™! (ester CO),), and 2973.32 cm !(CH
aliphatic), 3252.81 cm™! (NH amine)"

TH-NMR (CDCl3): § 8.99 (2H, S, NH), 4.12 (4H, q, CH,-CH3), 3.29 (4H, dd, CH,-
NH), 2.26 (8H, m, CH2), 1.62 (8H, m, CH>), 1.26(6H, t, CH3-CH>).

BC-NMR(CDCI3): § 170.86 (CO), 159.03 (C=C-NH), 90.60, 58.66, 43 .09, 26.24,
23.81,22.59, 22.26, 14.62.

MS EI m/z: M™364, 320, 292, 264, 198, 183, 158, 155.
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ethyl (Z)-2-(2-(2-(ethoxycarbonyl)cyclopentylidene)hydrazineyl)cyclopent-1-ene-1-
carboxylate (V).

O

o N
r HN"
o

0/\

Mo. Formula: CisH24N>04 ( M.W = 308g/mol).

FT-IRvm.: 1604.55 cm™ (C=C) , 1647.36 and 1732.91 cm™! (ester CO), , and 2996
cm '(CH aliphatic), 3259.78 cm™! (NH amine)

TH-NMR (CDCls): § 10 (1H, S, NH), 4.14-4.26 (4H, m, CH,-CH3), 3.49 (1H, t, CH),
1.83-3.15 (12H, m, CHy), 1.26-1.30(6H, m , CH3-CH,)

BC-NMR(CDCl:): § 173.54 (CO), 169.42 (CO), 161..20 ( C=N), 155.28 (N-C=C),
96 .15 (C=C), 61.97, 61.36, 38.06, 32.15, 27.38, 25.95, 25.91,23.22,21.44,14.67

MS EI m/z: M*308, 263,216, 188, 160, 108, 80 .
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1,4,5,6-tetrahydrocyclopenta|c]pyrazol-3(2H)-one (VI)

Mo. Formula: C¢HgN>O (M.W = 124g/mol).

FT-IR (KBr) vma: broad band for OH from 3400 — 2500 cm™, 3000 cm™ for CH
aliphatic, and strong band at 1590 cm™ for C=N, and at 1529 cm™! for C=C

TH-NMR (CDCL): § 10.51 (2H, S,br, NH), 2.46 (2H, m, CHy), 2.39-2.33(4H, m,
CH2)

BC-NMR(CDCl): § 154.50 (CO), 153.50 (C=C-NH), 107.50 (C=C-CO), 30.47,
24.48,22.62
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1,2,4,5,6,7-hexahydro-3H-indazol-3-one (VII)

77

NH

Mo. Formula: C7H;o(N2O(M.W = 138 g/mol).

FT-IR (KBr) vm.: broad band for OH from 3400 — 2500 cm'and a low frequency of

3000 cm™ for CH aliphatic, and band at 1611 for NH binding cm™, and band 1560 cm"
Iat for C=N, and at 1540 cm™' for C=C.

TH-NMR (CDCls): § 10.26 (2H, br.S, NH), 2.5 (2H, t, CH,), 2.41(2H, t, CH), 1.62
(4H, m, CH,)

BC-NMR(CDCl): § 158.95 (CO), 140.30 (C=C-NH), 98.94 (C=C-CO), 23.32,
22.75,21.74,19.35.

MS EI m/z: M*138, 110, 81.
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diethyl 2,2'-(piperazine-1,4-diyl) bis(cyclopent-1-ene-1-carboxylate)
(XIII)

-0
0 N
O
/o

Mo. Formula: CxH3oN204(M.W =362 g/mol).

FT-IR (KBr) vm.: 1666.82 cm™' (C=C), 1742.13 cm™! (ester CO), and 2981.90
cm!(CH aliphatic).

TH-NMR (CDCL): § 4.13 (4H, q, CH,-CHs), 3.48 (6H, m, CHy), 2.64(8H, m, CHy),
1.79 (4H, m, CHy) 1.26 (6H, t, CHs).

BC-NMR(CDCl:): 165.88 (CO), 161.79 (C=C-N), 103.09 (C=C-CO), 97.63(C=C-
CO), 61.31 and 60.48, 49.88 and 49.09, 35.25 and 32.38, 20.93 and 20.18, 14.64 and
14.14.

MS EI m/z: M*™362, 333, 289, 224, 135, 243, 122, 194, 110.
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3.3.2 Reaction of cyclic beta-ketoesters with di-amines.

General procedure:

Two equivalents of ethyl 2-oxocyclopentane-1-carboxylate or ethyl 2-oxocyclohexane-
1-carboxylate were added to one equivalent of the diamine with ethanol ( 20 ml ), and the
mixture was stirred and refluxing, The solid formed was filtered and washed with ethanol

then dried on vacuum, giving a different color precipitate, the precipitate recrystallized

from aquas ethanol to give compounds (I1I, IV, VIII, IX, X, XI, XII)

Table 3.3:The melting point , % yields and Color of synthesized compounds(I11-1V-

VIII-IX-X-XII)
Compounds Yield (%) m.p. (°C) Color Reaction.time

m 97 164-165°C purple 8h
v 36 153-154°C gray 72h

A\111 12 169-170°C Yellow 96h
IX 18 154-160°C Yellow 96h
X 43 162-164°C Yellow 144h
XI 24 280-282°C White 72h

XII 40 85-88°C White 48h
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diethyl 2,2'-(1,4-phenylenebis(azanediyl)) bis(cyclopent-1-ene-1-
carboxylate) (I1I)

0 N
N
N 0

Mo. Formula: CxH2sN>04 (M. W = 384g/mol).

FT-IR vma: 1601.08 cm™! (C=C), 1653.82 cm™! (ester CO), and 2855.67 cm '(CH
aliphatic), 3055.82 (=CH), 3295.97cm ™! (NH amine) c)

TH-NMR (CDCl:): § 9.53 (2H, S, NH), 6.97 (4H, S, Ar-CH), 4.23 (4H, q, CH,CH3),
2.73 (4H, t, CHa), 2.55-2.76 (4H, t, CH,), 1.87 (4H, q, CH), 1.31 (6H, t, CH3-CHy)

BC-NMR(CDCI3): § 168.49. (CO), 160.57 (C=C-NH), 136.36, 121.90, 97.28, 58.94,
33.51,28.79, 21.73, 14.68

MS EI m/z: M™384, 338,292, 264, 184, 237, 156.
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Diethyl-2,2'-(1,4-phenylenebis(azanediyl))bis(cyclohex-1-ene-1-
carboxylate) (IV)

A

Mo. Formula: CsH3:N>O4(M.W = 412g/mol).

FT-IR v 1589.54 cm™ (C=C), 1643.36 cm™! (ester CO), and 2978.18 c¢cm !(CH
aliphatic), 3152.51cm™! (=CH), 3207.53 cm™' (NH amine).

TH-NMR (CDCl): § 10.70 (2H, S, NH), 6.98 (4H, S, Ar-CH), 4.22 (4H, q, CH.CH3),
2.37 (8H, m, CHy), 1.62 (8H, m, CHy), 1.29 (6H, t, CH3-CHa).

BC-NMR(CDCl:): § 170.84 (CO), 156.58 (C=C-NH), 136.23, 125.38, 93.04, 57.22,
29.96,27.09, 23.85, 22.32, 14.59.

MS EI m/z: M*™412, 364, 319, 136, 108, 79.
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ethyl 2-((4'-amino-[1,1'-biphenyl]-4-yl) amino) cyclopent-1-ene-1-
carboxylate (VIII)

0
ALV
0

Mo. Formula: C2H2N>02 (M.W =322 g/mol).

TH-NMR (CDCl): 9.701 (1H, d, NH) 7.53-7.48 (8H, m, Ar-CH), 4.25 (2H, q,
CH2CH3), 3.60(2H, br. S, NH»), 2.89(2H, t, CH>), 2.06(2H, t, CH2) 1.93(2H, quintet,
CH»), 1.34 (3H, t, CH3-CH>).

BC-NMR(CDCls): 168.53, 160.47, 139.80, 135.03, 127.58, 126.98, 120.79, 115.46,
98.09, 59.03, 33.77, 28.74, 21.84, 14.68.

MS EI m/z: M*™322, 276, 250, 184, 167, 138, 123, 77.
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diethyl-2,2'-([1,1'-biphenyl]-4,4'-diylbis(azaneylylidene))
bis(cyclopentane-1-carboxylate) (IX)

(

Mo. Formula: CsH3:N>04(M.W =460 g/mol).

TH-NMR (CDCl3): 9.69 (1H, S, NH) 6.84-7.50 (8H, m, Ar-CH), 4.26 (4H, q,
CH2CH3), 2.87(4H, t, CH»), 2.60 (4H, t, CH>), 1.92 (4H, quintet, CH), 1.34 (6H, t, CHzs-
CH>) ((enamine))

BC-NMR (CDCl3) & 173.55, 165.40, 137.85, 129.96, 125.33, 118.83, 54.64, 37.48,
33.30, 29.49, 21.82, 19.82, ((imine)).
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ethyl 2-((4'-amino-[1,1'-biphenyl]-4-yl) amino) cyclohex-1-ene-1-
carboxylate (X)

Mo. Formula: CziH2N>02 (M.W =336 g/mol).

FT-IR (KBr) vum.: 157829 cm™ (C=C), 1631.60 cm™' (ester CO), and 2980.96
cm '(CH aliphatic), and 3036.16 (=CH) 3223.09 cm ™! (NH amine) and 3350.92,3453.78
(NH>).

TH-NMR (CDCl): 10.87 (1H, d, NH) ,6.75-7.52 (8H, m, Ar-CH), 4.24 (2H, q,
CH,CH3), 3.70 (2H, br. S, NHa), 2.40 -1.62 (8H, m, CH,), 1.32 (3H, t, CH3-CHa).

MS EI m/z: M™336, 290, 184, 167, 234, 145, 91.

82



1,2,3,4,6,7,9,10,11,12,13,14-dodecahydrodibenzo]c,i][1,2,6,7]
tetrazecine-5,8-dione (XI)

H o
| H
SNPLN]
N

XN

H |

H

Mo. Formula: Ci4H20N402(M.W =276 g/mol).

TH-NMR (CDCl): § 10.27 (4H, br,S, NH), 2.50-2.41 (4H, t, CH,), 2.24-2.21 (4H, t,
CHb), 1.64-1.63 (8H, m, CHa).

BC-NMR(CDCL): § 159.04 (CO), 140.54 (C=C-NH), 99.03 (C=C-C=0), 23.30,
22.72,21.74, 19.32.
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ethyl(Z)-2-((2-(3-((2-((2-(ethoxycarbonyl) cyclopentylidene) amino) ethyl)

amino)-3-oxopropanamido) ethyl) amino) cyclopent-1-ene-1-carboxylate (XII)

S~ N\
0) (0]

H H
H H
O 0]

Mo. Formula: C23H3¢N4Os (M.W =464 g/mol).

TH-NMR (CDCl): 8.161 (1H, S, NH), 7.452 (2H, S, NH) 4.031 (4H, q, CH,-CHs),
3.02-3.65 (15H, m, CHa), 2.35 -2.54(8H, m, CH,), 1.18 (6H, t, CH3-CHy)

BC-NMR(CDCl): §179.25, 167.62, 167.50, 165.24, 91.83, 58.12, 45.15, 43.70,
40.54, 39.70, 39.29, 20.87, 15.18
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3.4 In Vitro Anti-bacterial Activity for Products

3.4.1 Bacterial Strains Used in the Study

The antibacterial activity of the studied compounds was evaluated against four bacterial
pathogens:

- Pseudomonas aeruginosa

- Staphylococcus aureus

- Enterococcus faecalis

- Escherichia coli

The bacterial cultures were obtained from the Department of Microbiology, Al-Salim
Medical Center, Benghazi, Libya. All the bacterial strains used in this study are clinical

isolates. The cultures were incubated at 37°C for 24 hours on nutrient agar.

3.4.2 Preparation of Bacterial Suspensions

Fresh suspensions were prepared for each tested organism. A 24-hour bacterial growth
was harvested and washed off using 100 mL sterile normal saline. The suspension was
adjusted to McFarland 0.5 standard using sterile normal saline, giving a final bacterial

concentration of approximately 10"8 CFU/mL.

3.4.3 Preparation of Chemical Compounds Solution
To study the antimicrobial activity, 0.001 g of each compound was dissolved in 10 mL of
a mixture of chloroform and DMSO. Serial dilutions were prepared at concentrations of

100 ug/mL

3.4.4 Evaluation of Antimicrobial Activity of Tested Compounds

The antimicrobial activity of the tested compounds was evaluated using the well diffusion
method. Mueller-Hinton Agar (MHA) plates were prepared and swabbed uniformly with
100 pL of the bacterial suspension. After allowing the plates to dry for 5 minutes, wells
of 6-8 mm in diameter were punched into the agar using a sterile cork borer. Volumes
ranging from 20 to 100 pL of the compound solutions were introduced into the wells. The
plates were then incubated at 37°C for 24 hours. Ciprofloxacin was used as the standard

antibiotic, while chloroform served as the negative control.

3.4.5 Determination of Inhibition Zones (mm)

After incubation, the inhibition zones were measured in millimeters using a zone reader.
One plate was used for each concentration of the tested compounds against each bacterial

strain.
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3.5 Molecular docking

Protein Preparation: The protein targets, Escherichia coli (3uu2) receptor and
Staphylococcus aureus(1vqq) receptor, were downloaded from the Protein Data Bank
(PDB). Water molecules, ligands, and heteroatoms were removed during preparation

using Biovia Discovery Studio.
Chemical Compounds: Chemical structures were drawn using ChemDraw.

Molecular docking studies were performed to evaluate the interaction between the
chemical compounds and 3UU2, 1VQQ bacterial receptor proteins using PyRx 0.8
software. Visualization of the docking results was conducted using Biovia Discovery

Studio
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Figure (2.2 d) 3C-NMR spectrum of compound (1) in CDCI 3
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Figure (2.2f) Mass spectrum of compound (Il)
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hamada-25 #752 RT: 2.59 AV: 1 NL: 1.15E6
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Figure (2.3f) Mass spectrum of compound (I1I)
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Figure (2.4 b) 'THNMR spectrum of compound (IV) in CDCI 3
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Figure (2.4 ¢) D>O spectrum of compound (IV) in CDCI 3
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Current Data Parameters
mohamed-abdelkader-

[

- Acquisition Par
Date_ 2
Time

INSTRUM

110
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Figure (2.5 a) FT- IR spectrum of compound (v)
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Figure (2.5 b) 'THNMR spectrum of compound ( v)
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Figure (2.5 ¢ ) D20 spectrum of compound ( v)
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Figure (2.6 b) 'THNMR spectrum of compound in DMSO-ds (VI)
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Figure (2.6 d) APT spectrum of compound (VI) in DMSO-ds
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Figure (2.7b) 'HNMR spectrum of compound (VII) in DMSO-ds
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Figure (2.7¢) D20 spectrum of compound (VII) in DMSO-ds
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C™5e)
BRUKER
(25

Current Data Parameters

NAME mohamed-abdelkader-28
EXPNC 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20240606

Time 17.28
INSTRUM spect
PROBHD 5 mm PABBO BB/
PULPROG zg30

D 65536
SOLVENT CDC13

NS 32

DS 2

SWH 8012.820 Hz
FIDRES 0.122266 Hz
AQ 4.085%4465 sec
RG 164.32

D 62.400 usec
DE 6.50 usec
TE 300.0 K

D1 1.00000000 sec
TDO 1
======== CHANNEL fl ========
SFO1 400.1524711 MHz
NOC 1H

Pl 12.00 usec
PLW1 18.0000000C W

F2 - Processing parameters
SI 65536

SF 400.1500000 MHz
WDW EM

SsB o

LB 0.30 Hz
GB 0

PC 1.00

147



¢ o ™ -
< . W =
o M. .
) o~ o

o )

—161

%
o

200

T T T T T
180 160 140 120 100 80 60 40 20

Figure (2.13c) C'*-NMR spectrum of compound (XIII) in CDCl;

I
0 ppm

Current Data Parameters

NAME mohamed-abdelkader-238
EXPNO 2

PROCNO 1

F2 - Acquisition Parameters
Date_ 20240610

Time 11.05
INSTRUM spect

PROBHD 5 mm PABBC BB/
PULPROG zgpg30

N
(SRS
=}

™

W
NN oYW W

300.0 K
2.00000000 sec
0.03000000 sec

47.00000000

== CHANNEL f£f2

2 400.151600

> 1H
CPDPRG[2 waltzlé

02 90.00

18.00000000

PLW12 0.34722000
PLW13 0.28125000
FZ - Processing parameters
SI 32768
SF 100.6177975 MHz
Wow EM
558 0
LB 1.00 Hz
GB 0
PC 1.40

148



H4amada-28 #1 RT: 0.03 AV: 1 NL: 3.87E5
r: {0.0} + c El Full ms [50.00-700.00]
100 121.84

95
S0
85
80
75
70
65
60
55
50

109.88
= 362.09

Relative Abundance

134.88 181.26
40

35

194.01
30 332.81

25
223.69

20

15
288.92
10

5 242.81
" l_.J,,LL_lJ_ LML Lol Lt dud d L L 42127 47007 sazs0 eco.40 ess.as
200

100 300 400 500 600 700

Eaatd

Figure (2.13d) Mass spectrum of compound (XIII)
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