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Abstract

In this research, we have studied the concepts of Integral
Equations which solution his it is importance in many scientific
applications. They have been classified according them to the
nucleus type that this solution depends upon it. Also the
relationship between these equations and the differential
equations has been discussed, including the applying of some
analytical methods to find the correct solution. The analytical
methods have proved the existence and uniqueness of the
solution. The application of numerical methods for finding the
approximate solution with using the MATLAB software and
error analysis were conducted, where the approximate results

showed the accuracy and closeness to the analytical results.
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(Non-Linear Integral Equations)
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el and 35 sl aal gl ge Aseaa) AN da yy calia) 1Y) Ll e ALl
ALl 1, — 5 0 Alalasy (23.1)

il e Alalsil) calaal) G

Aahad e EWaleall JIKE (oany 034

lalall Alobaall -1

Ou(x) — A f ke )y(7,00))dy = g()  (DER™m> 1) (24.1)
D

A el e adiag Lee g g AlalSall aidy jala Aalaa et Aalaall 028
IS e GLS (i jala Alalae (555 Laic

B(x) = g(x) +1 j k(e )y (v, 9()) dy (25.1)

— Oy yela ddales PR aalll) Adaleall G.al_ﬁ\ t}.ﬂ\ o )il 8 -y jala s Lala
IV g sl on 1yl b

X

f k(e )y (7, 00)) dy = g(x) (26.1)

a
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LS Alsled -2
B(x) = g(x) +ka(x,y,(z)(y)) dy (27.1)
oAl — 5l g Adae e
LS Aliled -3
a0 + ) [ [22]dy + [ F(x,7,000)dy = g0 (28.1)
: :

S3LED 5 S Aslae ansd

-Aalal<il) Y aledll - 4
Ou(E ¢) + A f K(E =, — MF 0, D)didT
N
t
+ AJ Gt—100, y,)dt = g(x,y,t) (29.1)
n

(QE:X(XI,Xz,---,xn) ) }_’=}’(3’1r3’2:---'yn))

Faie oaadad () Cua (hd e JRAI )il @ Salaan B AYalee e
(Jalsall




kel sl - 2091

.[10] <[9] 3153l dpeailly dlalsil) i slaal) Civiai 4 - 1
ed) B sl Al Lganadti g gl (S LSl ¥ aledll

adll Wl [a, b] sl 8 Alaie k(x, ) 358 <l ALalSs Alslas -
(B M Eus) ke, <=M
SR VS PR-A IR PRGN I TATER 1K PPRrER

b b 3
<ff|k(x,y)|2dxdy> =C (30.1)

lalsill dabeall 8 UL Cued - ulia Bl e Aagiie B3 gaa dad € Cus
AR g 5 e Aalae e
t AN gadl) do BILEN B 5l s Ao dtalsil) e alaal) Cilat g

SISl A2l 8 gal) il 1) -

A(x’y)a L 0<a<1 (31.1)
k(x,y)={ lx—yl
A(x,y) In|x — y| (32.1)

Lol AlalSill Alalead) e JUy Al 228 8 Leiliide g & Alaia A 4 (x, y) s
(32.1) A le 35 5l (31.1) (B Gl S 815l dunilly 350800 i

A e 3 gl ¢l 13} -2

k(x,y) = Bﬁ'}f) (33.1)

Llida g & Abate A B(x, y) Cus | (2568 B 5 e Ll
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- Il A4l 8 gal) il 1Y) -3

k(x,y) = (JCC(_";;,)" ,m > 2 (34.1)

il Y oS m = 2 Ladie 35080 45 8 dabee pend dplalsill ddaladll 8
Al Cx, y) Cus 30000 3aad dilee (gend Llalsall Al Jom > 2
_L@j\"" » 5 ‘“SA “S -

- Ji e 3 sl s 13) -4

k(x,y)=% 0<a<1 (35.1)

La cend ALl dalad) (8 UL deildisiay & At Al D(x, y) Sus
il

leie adll (Sl 1)) Juadll A4 3 53 f(x, y) 315 e i dhadll AL 3153 -5
st A G Jala e e 2 IS O sy daginall 2 gaall (e 20 ¢ senaS
(S il e dadd gy 8 Ally g Ladd

n

k@y) = ) w@n) (36.1)

i=1

Lt Altis v, 2y Jsall 0585 S
IS 1Y) AL et e (2, ) Aeall A el A1) AL 51530 -6

k(x,y) = k*(y,x) (37.1)

Ol A 31 il il 135 Aol @l e Jaasi e el () o Cas
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k(x,y) = k(y,x)

il 1) -7

k(x,y) = —k(y,x) (38.1)
Sl 3 il e 3153l 038

all e <8 Al 8 6l i pba 8160 -8

— y—x
k(x,y) = cot (T) (39.1)
Sk Bl 5 e dda Ol piata y, x s
il 13) 248 Hall 8 gl -9
k(x,y) = k(x —y) (40.1)
sl o yai Al 30 5illy 31 gil) e e (x — ) Ao Tl adiad 31 530l ) (S
sshal s il g gl e dalae Ll e 48 53 31 i) <3 A Lal<il)
[11] dalalsall ol gaay 3 Alalaa blaiiad 5 - 1

alee JS35 ) o dplalaill c¥alaall 8 daad) da g il Jilise off iy oY) a i
) AUl A5 50 (e dalalail) Aalaall (88 Gl dulalall ol oy 53

y'(x) + Ax)y'(x) + Bx)y(x) =F(x) a<x<bhb (41.1)
Lo g il caas
y@=y, , yb)=y (42.1)

d.qlS:u a<x<b 3)-\33\ d)\; L@ALLMM 9 6'“ ilats i g 4.5)’.4 d‘}ﬁF’B'A Ui QL\:\A
:L;Js Jaani aal) Lo gyl NRENPR Sla o (41.1) Ualaall
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X X X

y'(x) |¥ +fA(x)y’(x) dx+fB(x)y(x) dx = fF(x) dx (43.1)

a a a

el @ aladiul @by (43.1) dalaadl (e faxA(x)y’(x) dx sl Jasill o) sl
ol aa 48 jally Jalsal)
[ 460y e dx = (4GY @I - [ 4Gy d, (44.1)
Glo Jani (43.1) 4 (44.1) e o sy
y'(x) —y'(a)

F(x;) dx; — A(x)y(x1) + A(a)y,

+ | [A'(x) = B(x)]y(xy) dx (45.1)

/
/

10) 225 (45.1) Al G G pils &5 C = ' (@) ol e JalSill s

') =C+ f FOa)dx — AG)y () + A@)y,

a

+ f A (1) — BGe)]yGen)ds (46.1)

e dhani (1-1) 438 e pladinl 5 4605 5 (46.1) JalSiy

y(x) —yo =[c + A(@)yol(x — a)

+ j(x —t)F(t)dt

- J{A(t) — (x = )[4 (1) - B(O)y(t)dt (47.1)

Lall Jleniud 5 (47.1) daal) G x = b pay Gask o abea (Say € )
(e dani y(b) =y,




kel sl - 2091

y1 — Yo = [C+ A(a)y,l(b—a)

b
+ f(b — t)F(t)dt

b
- f {A() — (b —[A' () —B®O]}y(Ddt (48.1)
Bl (8 LS5 Lebaat (S ALl Al

C+ A(a)y, = bia{yl
b
— Y, f (b — )F(t)dt

b
+ f{A(t) — (b-[A(®) - B(t)]}Y(t)dt} (49.1)

10l 225 (47.1) 4 (49.1) Asladl) ol

b b
y() —yo = ’;_j{(yl —yo) - f (b - OF(D)dt + f A®G =) — (b— OIA'(D) - B(t)]}y(t)dt} +

j (x — OF(Hdt — f (A — (x — DIA'® — BODy®dt

JSG e Ledanadi oSy il
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b—a

X b
() = yo + f (x — OF (D)t + "‘“{m - f - t)F(t)dt}

b
+ {(’;:2) f {A(t) = (b—)[A'(®) = B(O}y(t)dt

- [4@ - @ - o - B(t)]}}ya)dt (50.1)
s
x b
Fo) =y0+ [ = OF©de + ;f_g{(y1 - |- t)F(t)dt} (51.1)

‘sl (50.1) Adabaall
b

y() = f(x) + %f{fl(t) — (b -0[A' (1) - BOy(Odt

a

- j (A® - (x - DA — BODy©)de (52.1)
Ol x <t S 1Y)y (o) ally Galad) JelSill o S ¢ 3l 8 43l Laalall (e
j (A®) - (x - OIA'(®) — BOTy(©)de - 0

Sl el J<al 3l (50.1) aleall Juily

b
yG) = £00 + [ kG y)y@de (53.1)
3 5ill Led g (AU & gl (e dalalsll o] gany )8 Alalae Jidd o
k(x,y) = g{A(t) —(b-0[A®)-B®)]} ,x<t (54.1)

Uias (e gle 50 = b Ay W e el ) cilias Ll (i Lild x > ¢ calS 1)
;o 223 (52.1) 5 (50.1)
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b b
[ ke oy@de =222 a0 - 6 - 9la© - By
a , a
- [t© - -0l © - BEDy©E
’ b
= f {g - 1}A(t)y(t)dt

b
- f [F2 -0 - (- ][4 (® - BOly®dt

b
b b
- [ (-2} Ay~ [ P - By
Ll Sl (i e 4y 850 5 4le
et = {“,j‘?{A(t_) - (b= Ol ©) = O] x <t 551y
AW {22} -0 g1 - B(r)]  t<x

GSal (42.1) Apaall Ly all cad (41.1) Alalil) Al o) Jsil) oSy @l e
k(x,t) 315 Ll (53.1) 3y all Je SG & gl e dalalSall ol gany j3 dlaleay Leliiad
(51.1) A8y oy f(or) o) 2l (55.1) Aalaally 4 e

1-1J<a

dalalsll Adalae ) Al Aoaal) dlialanl) ddaleall Jga

y'+y=0 (56.1)

y(0)=0 , vy =1 (57.1)
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Jall
(o a3 (42.1) byl 5 (41.1) 483all (57.1) 5 (56.1) <¥abaall 45 jlaay
Ax)=0, Bx)=1, Fx)=0 , yo=0, y; =1
sle Juani (55.1) 55l 5 (51.1) oad) ikl (B aill o3gy i sally

X

b
£(x) = f(x — 0).0dt + (22 [1 _ f(b _ t).Odt]

0

. b-0(2) x<t
fe)=3= k(x,t) = {(t—a)(b—x) ’ x>t

b-a
Ladie ¢l dua Alaia je LalEide K1y = ¢ die Alatd) 8 gl o Eua
b-t
ok _ |pa XU
N

b—-a

@x=tmw"-:~ | 0dgd 5 asll dagd

-1

[ak(x,t)] . [ak(x,t)] _a-t _b-t _a-t-b+t _ —(b-a) _
x liio 0x li(_g b-a b-a b—a b-a

;IS el Alalsl) al gy 58 Alolaa ¢ Sl

X b
_ (t—a)(b—x) (b-t)(x—a) x—a
y(x) = jTy(t)dt'i‘ Jwy(t)dt T
a X
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[12] ddalsil) | il b Adalas Jaluiind) 6 - 1

g SlAL g AI0Y) sl Jlse (o ZolalSl) |50 g8 Alalas Jaluiinly o g ¢ 3all 128 3
Aty da g il enld Aoloalanl) Aalaal) g LalKall |l g Y alae e danla) 28l aa o
Ul A A D) e dudadldl dbalatl) Alalaadl e

y"(x) + Ay’ (x) + B(x)y(x) = F(x) (58.1)

A1) Lo g il daalal)

y@=q , Y@=q (59.1)

(58.1) Al g < x < b3yl & Aaiey A e JIs0 A,B,F Jisdll o) Sua
Aosilatie ye 5 Al Al (e dplad dglialis

ol i x G a oe (58.1) Dalaall JalSy

X X X X

[ yrGeoan + [ Ay e + [ By = [Faodn @0

a a a a

rle Jeani (60.1) Aabaall S 2all 45 illy JalSl) el 2l

[ 4Gy Gdx = [4GyEN - [ yea G, (61.1)

rsle Jeant Jal&ill ) 5a) 5 (60.1) 2 (61.1) Aabeall (e s silly

X X X

[y Ge)TE + [AG)yGe)IE — f A ey (o) + f B(xy)y(ry)dy; = f F(x,)dx;

a a a
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Y (%) — a1 + A@)y(x) — A@)qo — [ A'(x)y(x)dx; + [ B(xy)y(xy)dx; =

jf F(x;)dx,

X

y'(x) = g1 + A(0)y(x) — Ala)qo — f[A’(xl) — B(x)]y(x1)dx,

a

_ f Fxy)dx (62.1)

1Ol a3 5 A1 850 (62.1) Aaladl) JalSiy

X

jfy,(xl)dxl - f[ch

a

+ A2)qo] dx + f AGe)y (e d — f A (1) — By () s dicy

a a

= ijxF(xl)dxldxz (63.1)
AgUial) aladialy
Jx}z F(xp)dx;dx, = jx(x —t)F(t)dt (64.1)

A sl peolall (S (63.1) Aalaall &




kel sl - 2091

y(x) —{qo + (x —a)[q: + A(a)qol}

— ](x —t)F(t)dt
+ ]{A(t) +(x—t)[B(t) -A'(O)]}y)dt =0 (65.1)

3 pall o LhlS (Say (65.1) Aabadll

Y00 = £GO + [ kG Oy (e (66.1)

£ = g0 + (= @la + A@aol + [ G = OF e 67.1)
S

k(x,t) = —{A@t) + (x —t)[B(t) — A" ()]} (68.1)

Cajhall s (o, £)31si L ) S g il e BLalSll )l g8 Alalae Jiad (66.1) Aalaall
Ol AV LIS Jagiy) 8 (68.1) Aalaall 8 3153 o Ll ey f(x).a
Aabeal Lgie dsidall salall Lplall (ol dll G gy Lae dplialédl) dlabaall 3 il
(67.1) A83ally &yl A of ans Ll 31 5l alall JS2N e IS IS i ddialil)
8 Lol st Ay sUasal) 3001 g 5ill s F(0r) a) pdand) Al LdSS Jagi ) 8

ol Ca ) Ll dlatadl)
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2 -1 Jda

bl Aobeall 5 laliall ALelSEl) Alstaall 2 )

y'+xy'+3y=0 (69.1)
) da il

y@O=-1 , y(0=0 (70.1)

Jad)

o Jand i il e (59.1) 5(58.1) ¥alaall (70.1) 5(69.1) <¥alaall &5 jliay
Ax)=x , Bx)=3 , go=-1, g, =0
(e Jani (68.1) 5 (67.1) 4Dl Gadaiy SN dalaYl

k(ey) = —{A®) + (x — D[BE) — /O] = —(3x — 20)
FG) = g0 + (x — @)@y + A(@qo) + j (x — OF (Odt = 1
0

Lo dean Al
O(x) + 1+ [ (Bx — 209 (Ddt = 0

O(x) = —1— [ 3x — 20)@(t)dt (Y s Lea




(_f'm\ -y
il gh g algad B Alalaa Jad Alasl) 5l
G £ gl dolalsll

Solution of Fredholm and Volterra
Integral Equation of second kind using
Analytical Methods



Cra Alalsil) ) il gh g ol gay B lailea Jad ddtadl) gkt - ¢ UGN Gl
Al £ sl
dedia -2
Adalsill al gy )8 Alalae Jad Lldsill (3 )kal) iy 222
Jaadll ALl 3) 53l 43y 5l 1-2-2
el ey & 45y 5k 2-2-2
Alalsill al sy 58 Alalaal Jall dilas 55 3985 3-2
ALl |yl 8 Aot Jad Abdasl (5 )kl any 422
Jusluiiall Jall 45y 5l 1-4-2
oY 5348 5k 2-4-2
ALl 1 58 Adalaad Jadl dilan 55 0 25 5-2

A3 J)gall 5 2 adll 6-2



S g 5l BI85 Alolae s AT (3 5L - 1 L

datia1-2
Al 3 ) geally Aulalsil) ol say j3 Aalaa o jas
b
000 = g(x) + A f k(x,7)0(0)dy (1.2)

8 daslae Al ko Aashee dlaie Al g Lalay) sthaall D geaddl Al 4 @ G
e 35 ae el Q) Sy () A ALalSl) Ailacall 31 5 a5 (0 peiie

(1-2) Jsa&
dua (1-2) 8E R = [a, b] X [a, b] &a el dskaial) e 48 jas | 3163
€ [a,b] 358 5SSy 3asw Ciligbca<y<bsa<x<bh
(1.2) Asladll (585 Waie 5 (—00,00) 3 (—o0,b] sl [a,00) JSill e Ayt
X
sl e asll o S A aloan b Adlas o salinall L) gam 3 | il 58 Alalaa Calids
5 seally S5 Lo sale 5 ey JalSl

D(x) = g(x) + A j k(x,y)0()dy 2.2)
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e e sh i ] Al 355 ke slae dlate Ay g W geaal) Al 4 @) G
Cagd |yl 8 Aalae (& R JlSil) dadaia 315l GBlas of Jaadls cal oy 8 Aalae DA
dapeadl YW gaa) mia g (2-2) S8 il el o adiads 3 e (Sl dide

) g Alabaal JalSil) dalaie JSA

osaall dalS (e (2.2) Adaddl @ dal Aole oy Dpalall Gliadail) e A
Cla A4l aia Y 13 (g < x < 00 G (Jad) Bla) JalSill 5 5 ) gl ¢ aal)
sl Y sl g esdle s, bl A sl g S x < b O G Al 38

a =00 gl oiall bl Jalsil

\
x

(2-2) Js

o LS 1y oA b il Jal ALt oLl el 5okl L 1 3
(Sl & gl

Ol ) il g8 Alalaa g ol a8 Aalaad Jadl (35 g S 40LaS Ellia
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Alalsil) ol a8 Alalaa Jad Aubdatl) (5 dal) 2y 2 - 2

Uan b lady cpmadl gl @adat Al gkl e laxe @llia Gl L sany 8 dAslaa Jad
(SN & il e dplalsall Al gany 8 Aalaa Jad doblall (3 k)

(Adaiall) Joadll AL 5) 53 iy ,1a o

bl Gluall 48y 5l @

Al Jdatl 3l o

Al iy 8l 48 )k @

Oty Julatl 48 5l o

ol (Jall 38y 5L 0

[13] el AL4EN 51501 Ay 1 - 2 - 2

(The degenerate Kernel Method)

Lol ALl Al gay i ¥ ol Jaadll AL 315 48 5l Gk e 6 3all 128 b
Ja hanis il S5 Al gaa il ALK ¥ alaal) 48k (he i 43yl Aliadic
)5 Juadll ALY 25 530 Lelnkad o A3 )kall o3 5 dludu A o Gl s Gis JS4

A ageall b Aliadial)

n

k@ y) = ) un®) (3.2)

i=1
8l ill aladiily g, Alitie ek J) g3 oo 3 ke vy, L, v, Dl Uy, o, 1y, Jsdl) Leaie
Sl e gl el 5 JalSi la

b
() = g(x) + f k(x,y)0()dy 4.2)
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n b
000 = 900 + 1) w@) | w»IOOIdy (5.2)
Cay el e g 1 el laial e Talal aciad Aalaa) o8 Jal 43y Ll

b
@ = f 2O dy 6.2)

38 5y | Aslly JolSill 26 dgany sy pusiall o Jaih Ay el ikl 8 il
sle Jeanii (5.2) & (6.2) s s I il il (5 shuse JASHN S o iy

0() = () +2 ) &) (7.2)
i=1

Bare LS B(x) dad pag asis Gl Jaaly g af alagl 3 ALl s Ml
e Juaniid (5.2) & (7.2) Aarally

giy)+4 Z akuk(y)] dy} =0 (8.2)

k=1

zn:ui(x) {ai - _Lb vi(y)

i=1

Sl Gl it gy, JIsall oS0

9O +2) (y)] dy =0, 92)

k=1

a; — jbvi(}’)

a

Aol ) ga ) aladiily

b b
[ ey =t [ vy = cu (10.2)

a
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el (9.2) Aalaall (8 e glaa ) 65 ¢y 5 hy Cus

a; — A (11.2)

=
1l M:
[N

D

=

1S

=

Il

=

-

Il

=

S

Alaill 131 D(A) 2asalls oy Jialaall &y pall VAl (10 11 22as alal (e 3 e a g

‘R
1—24Ac;1 —Acyz .. — Acin

p() = | A 1= A o — A (12.2)
—Acp1  —Acys o 1—=Acyn

Ll elly D) AU o SV e da jas 1 (S asas Cilaaede (o aldaill 138 ey Gl

_Eh}\ﬁ;&m@mﬂ@lﬁﬂ:OLAJS.GM\“LP“)M\L.;JMY

OsSs ¢(4.2) el Adlaalls ¢(11.2) somad) Qi U <D (A) # 0 Lesic 2 o sl
o) alail) 8 (D(R) = 0 Ledic ] aff aaes Gl AV ulall Gas ams Ja Ll
Sle¥ 22 L 05 5 Jall LG e 065 o) Wl ¢(4.2) kil Aaladd) aa (11.2)
Oy Cun o SN & gl e ALKl Alabaal) Ladd jliie W) 8 GAAT 4l BaaY  Jlad) g

s Laas g 45 k) s3a (Gaukas

x—y,x%—y%xy? +x%y, .. ot Aladiall 4y U Al
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1 -2 Jla

S & sl e ALl ol gany b Alalaa s

D(x) = —% cos(x) + %ficos(x — y)0(y)dy (13.2)

0

Jal

: SUIS LS Kas k(x, y) = cos(x — y) sl oY)

k(x,y) = cos(x) cos(y) + sin(x) sin(y) (14.2)
| aahy é iliadia 3l A
k@ y) = ) w@u) (15.2)
i=0
u,(x) = cos(x) u,(x) = sin(x)
(16.2)
v, (y) = cos(y) v,(y) = sin(y)

AUl 483l 5 [, b] 2 g arn (A (2-2-1) 588l 8 A5y Hla andis

b b
f v;(Wu(y)dy = ci f v;(y)g(y)dy = h; (17.2)

Ll 5
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iy = j o s ()dy = f cos(y) cos(y)dy
0 0

= fz cos?(y)dy = %le + cos(2y)dy (18.2)
0

0
= %[y + %sin(Zy)]g

= %G + %sin(n)) — %(0 + %sin(O)) = %
i = [ 00w 0)dy = [ “costy) sindy = ez (19.2)
0 0

w = sin(y) = dw = cos(y)dy &3 sl Jal&ill aladia

o Jantii (19,2) Aaladll A w e (o il

1T

f: wdw — [%WZE = [% sinz(y)]j = %(sin2 (g) — sinz(O)) = %

C22 = fivz(y)uz(y)dy = fzsin(y) sin(y)dy
0 0

T[

g
0

TC

= %le — cos(2y)dy (20.2)
0

iy~ L]} = 35~ Lsinm) - (0 - sin) =
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hy = f "0 ()90 dy = f *cos(y) cos(y)dy
0 0

(18.2) PEY | AREE

hl=_—2.(f)=_71 (21.2)

T

hy = f "0, (g ()dy = = f sin(y) cos(y) dy
0 0

(19.2) &3l alasiuly
-2 1 -1
h=2(3)=% (222)
B b g s
n
a; — )\Z CikQy = hi , i = 1, o n (232)
k=1

shena 0S5 3 (23.2) 4SS e

G D[ clal=[] @4.2)
-1 82 2])lea- | s
_>[__2 75] [gz] - [—_1 ” Zz] :-—4[3 O] [—_1]" [ZZ] = H (26.2)
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A8al) aladsialy
O(x) =gx) + /12 a;u;(x) (27.2)
i=1
D(x) = %Zcos(x) + % (%) cos(x) + % (%) sin(x) (28.2)
ale

@(x) = sin(x)
[12] <[11] <[10] & ALY (e 4 Jall

Aliall by ) Ay 2 -2 — 2

(The Method of Successive Approximations)

o3¢ AlalSill ¥ aleall ol A00a0Y) 2l Jilisal Jadl alag¥ anaciog 4l culy &l 43 )l
elacly o 138 5 oJall dgilinad) cly il slagly @lld 5 Allise Y Jall alay) oSy 45y Ll
A gl 0S5 ¢ (Saall G Gl A s T 5 e B e Ja) Al A8y apeds
Gl ol o 2y 2 S Bl sl 58 o 01 Jall S5 @B ANl B

lale J panll

[14] 208y 435k 1
(The Picard method)

(Emile Charles Picard) 2_tSs Sl il el jl1 () dsd 3 )8 48y jlay Carans

i (g1 I o B s o Al eda ala

Bo(x) = (a:,s:,s;u\a s ),
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A0, (x) dall Js¥ il e J geanll 4LalSill alaall 8 Jall 13gy g ol &

138 5 dulalsall Aalaall & 2aa e A 13gy iy sadil)

0, (x) = g(x) + j bk(x, N (Mdy ., n=123,.. (29.2)
38 Jasuzmall dall oK)

0(x) = lim 9, (x) (30.2)

2 -2 JLa

Ay Alalall ol gany 5 Alolaa i an ) o(20S0) Alall iy Sl ARyl Lardins

B(x) = x + e* — [} xyB(y)dy
Jall
Bo(x) =0 Ol o

b b e Jiani (29.2) 4 Sl A8 Gadaiy oY)

b 1

0,(0) = g(x) + 4 f k(x,Y)Bo()dy = x + e* — f xy(0)dy = x + e
a 0
b

0,(0) = g(x) + A j k(x, )8, () dy

1
=x+ex—j xy(y + e¥)dy
0
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1 1

=x+ex—xf yzdy—xf ye¥dy
0 0

= x+e" —x[y*/3l — 2y — Devls = e* — 3x

BIBTTIE
1
O3(x) = x + e* —f xy@,(y)dy = - =e* +x
0
1
Pu(x) =x +e* —f xy@s(yY)dy = - = e* — 2—17x
0

D(x)

1

0n(x) = x + % — f YD1 (0)dy
0

(-
=e* + 1 x, n=123..
s dall oS Jull
. . (_1)n—1
= lim 9,,() = lim (e* +5-x)

=ex13x(lim i) =e*

n—oo 3™
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[16],[15] clagss Abeabeiiia 48y 30 -1
(The Neumann series method)

OS5 Al e ¢ @ (x) = g(o) Dl (S8 Ladie: Jlagy dluluia e Jgeanll oy
i JalSl LMl cand A gadiall e 3 gasll

b
0, () = g() + 2 j k(x, )00 () dy (31.2)

a

b
= g0 +1 j k(x, y)g()dy

= g0 + M) (32.2)
Ladic
b
fi(x) = f k(x,y)g () dy (33.2)

SIS B, (x) S i e Jsand) (S

b
0,(x) = g(x) + f k(x, )8, (y)dy (34.2)

b
= g0 +1 j kG O + A7)}y

=g(x) + 11(0) + A2 £,(x) (35.2)

b
() = j KGo )y (36.2)
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P(x) 3 Sl dadl e Jpanll (Say iy Hhall iy ) il

OC) = g + A0 + 200 + b Ay () + -

=g(x) + z A" fn () (37.2)
n=1

Laaic
b

fo(x) = f k(x,y)fn-1dy n>1 (38.2)

akaiie S o)l Al Aluluiall 38 5 (e o Aluslidiag o jad (37.2) dluluiiall

:,“ (Al .~,.. 'y

1 b b
1] < = , B = f k?(x,y)dxdy
B a a
Al ) aslayl
b
sz(x,y)dySA, a<x<b

a

[, b] (5340 8 3lae o Sy 5 g AL 0l e 5 5 A
B(x) I Sl dal e Jseanll (S

0) = g0 + lim )" A™f(x) (39.2)
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3 -2 b

(o s Aaalusia) ddliall iy a4yl aladiinly 4LalSil ol oy 8 dlalea Ja 2a

1

P(x)=1 +f x@(y)dy
0

O i
Bo(x) = g(x) =1

SIS g (S 5 oy

1

0.(x) =1+ f x0o(y)dy

0

1
=1+fxdy
0

=1+x

0,(x) =1+ j X, (y)dy
0

1
=1+] x(1+y)dy
0

= 14x(1+3)
= X >
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IS 5585 A o ) 6 iy Sl i

e Juanii 121

1 1 1 1
@n(x)z1+x{1+§+2—2+?+---+2n_1}

Sulb g

0(x) = lim 0,()

Gllaall dall sa




S g 5l BI85 Alolae s AT (3 5L - 1 L

[17] Alalsill al gy 58 Alalaal Jal) ddlan g9 2529 3 - 2

Agilaa ol 5 3ga o) Ayl

S g il e ALl Al gany 5 Adlaall b k(i ) 85l cilS 13

b
D) = g(x) + A j k()0 ()dy
a
Ol sl (R Ao yall dalaiall 8 3oana 5 Alialia 5 diia Alo 4
lk(x,y)| <M, a<x<bh, as<y<b

il A dlate g(x) # 0 Al CilS 135 23ma g e B e 4 M s
B8Dally ars m 5 i (1.2) Adbaall of ol (S 150 s Laie [ g, b)

IAIM(b —a) < 1 (40.2)

Siad (Ja cllin ud 431 555 pumlly iny Y A e 5 Ja 25m 5 (paniny (40.2) Sl

1
O(x) =—4+ J (2x + 3y)@(y)dy
0
ondes (b—a) =15 k(x,y)| 554 =1 2 bl I Giay ¥
AIM(b—a) =5>1
b da s B(x) = 4o olé 138 g
LSy

SllS i) e g Y1 ey () Galdl g sl




S g 5l BI85 Alolae s AT (3 5L - 1 L

Alalail) | il b Al Jad dpbdasl) 5k} (ny 4 -2
GBI Gans b ey i sl 13g] Gala Al Gkl (ge Tase llia (a1 58 Aalaa Jad
(g gl e ALl |yl b Alalae Jad Al

Jubiiall Jall 48 5l o

Alsaall Jlatl) 5,1 o

Aglliiall iy &l 43y )k o

Al e Al ) Syl Jall A3y yla o
S el ds, )l e

OOLY Jisaidny yha e

[19] « [18].Judusiall Jad) A8y 3k 1 - 4 — 2
(Series Solution Method)

dall alagly axdiud s bl Alaluia (e Lealiing o3 sahe 48 5k 8 Juluial) Jall 43 51
Aalalil) Y aleall

1-4-2 iy

@ vie sl Auluie Jie ol JS e Liliiie cilS 13 At cand @) Aiiasll A1)
Gaill & p ddas

n

o) = Y L0 - by (47.2)

k=0

b slae p(x) S
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5 seall e S (Ko x = 0 2ie LU Aluluial plall J<E) dapell
B(x) = ) apx" (48.2)
Aalutie J€5 32l y (st da g (2.2) 2llSil) 1,0l Adaad @(x) Jall o i

Lalagl ol G @, COlrall Can (48.2) Ly shls

B (2.2) Aaaall (A )k (4 (48.2) L s

i anx™ = T(g(x)) + A fo ke y) (i any"> dy (49.2)

n=0 n=0

X
Ao+ arxt +ax? + - =T(g(x)) + Af k(x,y)(ay + a;y* + a,y? + ---)dy (50.2)
0

o Ledisnd o g (49.2) Lkl Al g (o) 3 sl Auduie T(g(x)) S
G asas (B(x) 1485 e uall AN JlSE (e Y (50.2) Adladdl b saliie V) Jalsill
CilS 13 agle (Jududiadl dall e Gl ail s LS oy Cagun > 0 ¢ ™ S e

W e 5 Al J1 g ilia J) g Jia Al J) g2 anai g ()

mas ) JE Lealadind ny g(x) Al Al i Jisall Ll lvie) agle
raluiall Cilsal) 45y
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4 -2 Jha

ualuiall Jall 48y 5k aladiiuly LSl ) g ddaleall s 2a )
0(x) = zex—x—z+f (x - y)0()dy (51.2)
0

Jal

Aalaall s B(x) 4 o) Xy ¥ 16l Aludi dgan (amy aladfia) &b Cogu
Aas¥ (51.2)

ap + a;x + ax? + azx® + a,x* + -
1 1 x
=x+x?+2x° + x4 +j (x —y)(ap + a1y + ay? + -+ )dy (52.2)
0

OV 2y eiall dAgaliiall 3 gand) 3l g Gar) ol (Wl
Ag + a1 x + a,x? + azx® + agx* + - =
1 2 1,1 3 1 1 4
X+(1+Ea0)x +(§+ga1)x +(E+Ea2)x + .- (53.2)
i (53.2) daleall ¢ puriall aliiiall (W) cld O Lleall 3l glusay

1 — 1
w 4 =35

a0=0, (11:1, a2=1, as = 3

a, =—, n=1,a,=0 poyax g
Sl JSEIL aUS ey Jaduite S5 8 )

OC0) =x(1+x+2x2 + 263 + 1x* + )

2! 4!
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conall Jal) ) ol 53
O(x) = xe*
[20], [4], [3] oY disaidiyh2 -4 -2
(Laplace Transform Method)

Lo a5 dlall |yl g ¥ alna ) 3l Goamy Jad Baiall 3kl aal e uBLY Jisad i
Y & ki (b

Y Jigad e
O Jissi g [PV g(y) JaSl ld ¢y > 0 uns 3 jaa Al g () cilS 1

GBS A e s G(s) susall A Al sdg]

o)

Llg(y)} = f e g(y)dy = G(s)
0

ol Jiaad) el ladie (6 Al 5 el el
oal Al e 23e BLY Gy gl

Ot yra Gl f g g S 1N A3 o) e dad Sise DY Jisad ey righall -]

QECulsih sadSsey >0 dusy

L{ag(y) + bf (y)} = aL{g(y)} + bL{f (y)} = aG(s) + bF(s)

Ss¥laasy -2

L{e*g(y)} = G(s — a)
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sl i3 -3

L{g)}=sG(s)—g(0)

Aagall I gal) (laral BN Jy9ad G (1 - 2) Joa

g) G(s) = L{g(y)}
1 1
s
y" S:l% ,n=12,..
k r'(k+1)
edy 1
s—a
. a
sinay oo
S
cos ay o
n,ay n!
y e W ’n = 1,2, aun
: 2as
y sinay e
y cos ay s?-a?
(s2+a2)2
e® sin by _ b
(s—a)2+b?
ay s—a
e? cos by GoaTib?
(1-2)Jdsx

038 anis «G(S) daaslaas g(y) Hual zlind Lo 18 Lild (Y Jysad cliplas b
b LS A Ly Y b ead e Saas Aol

L7HG()} =9 (54.2)
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2-4-2 @yl

(Convolution) <ty
:ﬁ;ﬂ]\MY\emﬁQAJJm:mL@g\w&M&ﬂbfjg;‘d\&\h}
Joa

ol s f 5 g ol Glaly sy [V (@)f(y — Ddr S ([0, 00) 5l
b LS

T

G+ = j IOf &y - Ddz (55.2)

0
VAP R ATRENE IR N, Ty W Fi e ek
L) Al e

Jealad (DY s ol ([0, 00) B_ll JDa Ll (piliaia il £ 5 g cilS 1Y)
AV A8l 5 pilae any cpillal) (pila ol

Lig * f} = LgOILF ()} = G(s)F(s) (56.2)

e oY A3yl Alaie e Bl sl oS5 Cangy G £ il (e )il g Aol o 230
calaily) Ay ylas

B(x) = g(x) + A [ k(x — y)B()dy (57.2)
3 pmall o LS (e AN o sede (e il
D(x) = g(x) + Ak * @) (x)
gt Albaall o3 Okl (LY Jaat 23l

LIO(x)} = L{g(x)} + 2 L{(k * §) (x)}




S g sl e TSl |yl gl sa i Alulae Jad Abball 5l - 1S )
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- ®D(s) = G(s) + AK(s)D(s)

S CI) (5‘) = G

1-AK(S)

,AK(s) #1

Al e (56.2) Wdlaad) Ja e Joans (i phll (WY sSae 22l Y]

k(x,y) =e*™¥

G(s) = L{e* — cosx} = L{e*} — L{cosx} =

O(x) = L7 {50 }=L—1{<s%>—_(s%1)}: L

000 = £ {52 2

6 - 2 Jua

AV dlalsall |l b Alalea Ja aa gl 0By Josad A3y Hha aladiuly

X

B(x) =e* —cosx — Zf e* 7 Y@(y)dy
0

Jall

Sl & il e o Blanall Aalaal) 3 i3

s A==-2 5 gkx)=e*—cosx s

1-2K(s) 1_(_2)($ 52+1} = sinx
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[21] Alalsil) ) 68 Adstaad Jad) d3ilan g9 2995 5 - 2

Agilaa ol 5 3ga ol Ayl

Sl Jal a2l S g sl e )l il AL Alalaall 8 g (o) Alall S 1)
P(x) = g(x) + /’If k(x,y)®(y)dy
RAGLL dalaidl) u_q 3aaaa g Aliaia alla k(x’y) 3 il il ‘[a, b] 5yl P dlaia
dua ¢(2-2) Jsa
a<x<b ,asy<x
Adaad Y @ an s da Al ) S bie
<Ly

S i) e g3 (S () Galall ) g sl

403 ) gall g A5IA 28N 6 - 3
[22] Alalsill al ga sy b ddalaal A5IM) ) gall g A5IM) a8Y) o
£ sl o dudlaiall LLISH ol sany 8 Alslaad Ja lagY Gk 2l ) Gkl oy g
£l o 55 S
B(x) = Afabk(x, NBG)dy (81.2)
(81.2) 1 ds 58 B(x) = 0 of zealsll cpo Al wdl Allises Alalaall o3¢d Ja dla) s
LN 35l A8k o pElal) Cleal) 435k ekt Cog el Jall 138 e s daaY
$355 @ 1R g o et 2] (ol ) R il g il Jonil
D) = 0 el Aol e (Jsbs §l) da N
O gl Sl Q8 g i) g Aalaall (5685 ) s el Gl 48 )l ks

k(x,y) = u(x)v(y)
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& (81.2) b L smilly
@(x)zzxu<x>1jv<y>¢(y)dy (82.2)
2
b
a= fa v(y)0(y)dy
dall ) deai (82.2) b s (e i g2l
@ (x) = Aau(x)
D(x) = 0 sz Jall andi ¢ = 0 ) Lia Taa Sl (4
Al Gardss o dladl Cluall 48 ) o) a3 dudlaiall algay b dalee s 8
Ja 4l ailate allaill 138 Jaad 30 A af oand Aasilaie g ja C¥alae Ui Y] ALl
A )5l adll o3gd 5,50 @(x) Jadl Jlss oanss Laias 51 5ill A1) adly ey e
Alalaall
8 - 2 Ja
A 1 pall 5 25 aill 2

0() =22 [ costx + )00y
0

Jad)
o) At cuall Adla ey (KU g Jiaall AL e slanal) 31 63l

k(x,y) = cos(x +y) = cosxcosy + sinxsiny
sUaxall dlalaall & alail) o Al & gSia e msad (VT L Jiaadll A8 30 53 a

T T

D(x) = %)\cosxj cosy@(y)dy+%7\sinxj siny @(y)dy
0 0

v P(x) = %A(a cosx + Bsinx) (83.2)
a =J cosx O(y)dy , B=f sinx @(y)dy (84.2)
0 0

Ol Gilsad) e Juasi (84.2) L3 (83.2) L sxin
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a=%Afon(acoszy+ﬁcosysiny)dy sa—Ada=0
,8=%/’lfon(asinycosy+Bsin2y)dy >B+28=0

AV 4 gheadl) danall o Legiin cpilabadl ity Ja Jagsdl
1-41 0 ar _ 10
[ 0 1+,1Hﬁ]‘[0]

o 8l Rl o n Leias

RS B s ad oSy
e A=4=1 - a=4, =0
2w A=A,=-1 > a=0, =B
o all o3gd 3 plaliall AglAl J)sall 0 oS5 L5 4y jlial cul 6 & B, A Cua
01(x) =ZAcosx , @,(x) = 2Bsinx
alanal) el Aoleall Y ls Jis il
[23] dalalsall | il gb Adalaal 45130 ) gall g 450N aidl) o
1-2 48

sl ey Y [a,b] X [a,b] & AalSall L8 a0 I3 ) il 8 8) 68 (3, y) &4
Lo slae 45513 ad [2[a, b] & K* (38 )l

O )
Al Gins @ 3 0 A5 0 35 03 K* iyl Reen A3 20 2 o1

1

@ =AKQ = 2*K?*@ = --- = I"K"9 V neN
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ol o
|A"K™*@(x)| - 0

n — oo

A Jso Ll Gadd c¥aladd) o3a ol dgild Lad clla Y aglelsill |l 8 Aol o Ly

il Jal s |l i) dalaial) Alabaa) o L




Sl L
il g8 alga B (ilalaa Jal el (5 skl
A £ gill ha Aplalsil

Solution of Fredholm and Volterra
Integral Equation of second kind using
numerical methods



.53 (o ALalsill | il gh g ol hy b ilabaa Jad Apasad bl - 1N i)
LA

dedia 1-3

dalalsall ol sany 53 Aalas Jad dpaaal) 35kl (e 223
i) AL 51 il Ay il iy 1-2-3
(A ) a5 iuni 48y yha 2-2-3

AlalSall ) il 68 Aalee Jad dnaall (3 )kl (e 3-3
L Al el 4k Bac B3, Hha 1-3-3

1 5 S - i) A5 2323



S g sl e Tl |yl g o] Ay 5 Alalae Jad Apaaall (3Ll B )

daxia1-3

Loanll Gkl b lgde Juand 1) gl b Ablasll 55kl e dgaaed) Gkl (alias
A8y il Laad 520) Abdail) (3l e e A 585 () 5SS

Alilail) (3 jlay 488y G o Jseandl GRYL 4l Ll dpaall 3kl aladinly e 5
st e il ) Jilud) gues b V) ia Al Gl ki Y dRdall b
A4S AL 3kl ey S e Shmd dglal Vsl mues 8 5303 Lials (g
Wkl lsie 050 Cumy a0 Jall e Jpmall Bpasadl R0 LY ol 1) cdlaly

Sl jral

Jolall (e e 55 ) Al ¥ alaal) (e Lo i AlelSal) ¥ataall sl Casias (S
(o L g ) 5V o8 aad (S 5 dualas Dl g 5k et JS

Lbgad Jall e
fo.a)sﬂ\ Jdall e

dall axi dlilas A3 e @ = @) Al b 088 s da 58 dasaaal) sl
o Claa agd oy oS0 Ala Baga Al (il o 81 Jal) L) AplalSil) Aslaall 580

o x 130 ad die @(x) Alall Ao

a1 dall s sy ray clilatl) (e 53 8 STy Jad) g @l D o guadl) Jall
e daalagY Gaaall 3kl gas) Bukai o) w8 Ja A pSall e diiy (o)
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Flalsl) ol ga 8y B Alikaa Jad Aasel) (k) (2242 - 3

Gkl e Lidlaial 38 5 Ua 5 cdolalsil) ol sany 8 Aalas Jad 4aoaall (3 5kl (e paadl 2a
-Alll) dpaaall

(bl Aol day 8l Juadll AL 3) 6l 44 Hla o

(omas il s i Byl

Gkl ol (Slg gAY okl (e el Ladf cllia g b )Sia @l yaria L 3ok o8
Mladasiad Y5 Al okl e ) Jads

[25] <[24] A il Juadll ALY 31 gl A8y k1 -2 - 3
(Degenerate Kernel approximation methods)

LS ) gy 9 Alsbee (ad (2-2-1) ) ) s Alaiial 31530 £y ko L3803
B(x) =g(x) + Af k(x,y)0(y)dy, X€D (1.3)
D

Bsegdiiade gaaa D dia . m =128l D c R™ 51 # 0 a=

G 250 g ganaS Lgie uanll (KA1 13 Aliaiia (55 LS AL f(x, ) 81l ) L e LS
il e dasd g 8 Al XS g dadd 8 A o pia Jeals S5 Cuay cdagiiall 3 gaall
;A4

n

k@ y) = ) w@u) (2:3)

i=1

Lapa o Juadll 1 (8 dag L dliadie ol k() AsY) Jls el oS
Alaiall e 3l gl 38y e alasiuly J)sall Gl Ay 8
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(laiall 1) dlaiial) 31 oil) 4 jha aladindy Llalsil) e alzal) Ja

Oe Adllsie Gk o Lew® s k() s Ay Gl dlasall dalall ) pkally

Aladidl J) gl

n
kn(63) = ) (i), n21 (3.3)

i=1
G Ky sl s
lim [|K — K,,|| = 0 (4.3)

n—oo
b LS Ady el oy yisall
K, 0(x) = fkn(x,y)(b(y)dy, x€D, peCD), n=>1 (5.3)
D

X =i m>1 a8 R™ A dalall Loal) de geadl e 3ke D dusy
c(D)

Aaexe K:C(D) = C(D) 0585 S (||l oo

bt LS el Aipaa 8 (1.3) Ruelsall laladl) S (o

(I-2K)@ =g (6.3)

IS (5.3) Asbaal alasinds LS Koy (6.3) Aslaadl) i il
(I-2K)0, =g (7.3)

Al 8 K, (2, ) A1l (3.3) Lsbadl) Liem aladids Abeall Jall g8 8 ) Cam
sl (7.3) dalalsll
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8 () = 90 + 2. ) i) [ vin ()0, (8.3)
i=1 D

ol o 5S) (2-2-1) e yall & LElia a3 Afd\ 48,k alasiuly g

Dn(x) = g(x) + /’lzn: a;u;(x), (9.3)
a; — xkzzl Cucty = by , i=1,..,n (10.3)
&

b = [ gy (11.3)

5

i = [ v w)dy (12.3)

(10.3) dbaall (s (2-2-1) eall 3 4l 5 LY o LSy Aaglan il i e 5 ke
slara D(A) Woasa S5 or; A genall il 4y juall c¥alaall (o 1 0 550 oUas (Jiad

JPATRDAN
1 - /1611 - /1612 e - /1C1n
pay=| Tper Tl - T (13.3)
_Acnl - lan T Acnn




S g sl e Tl |yl g o] Ay 5 Alalae Jad Apaaall (3Ll B )

'Pg}uytfmﬁ e AaHn Gl &}Agdjhgﬂdmd‘;};)\_};g‘ggb
Al VAl Wal S dliasiall 31 gl 4y Hha e\q';;'w\_; (133) aleal) Ja Jalaiil

(1) )

Y hyshy, e, by (9.3) @¥aledl 4o ghaial o) Gl o) al aal JBY) e Lavie
A Al Gt s e ol GElladl Glé jiea g glad

Y alrall Ao ghaial hia s ¥ Al amll Jall i D) #= 0 O 1Y)
e 0585 e sl Y s da Ll (1.3) Aaleally ca9n 50 550 (10.3)
.(9.3) A,
S da 4l Gl 05 o) W (10.3) S¥aledl Aaghaia B cD(A) = 0 g8 1) =
Y da W 06K 5 da L Gl W (1.3) Aalaadl U1 A3 Y sl o5&
(e
(2) Aw

Sl =12,..,n a8 h =0 ) Sl (11.3) Aabaddl i cg(x) = 0 Lexie
ol il dalate dghd Al alai ) jeaidg (10.3) @Valeall daslaie

Ay Al casd ol o

(p=0y==0,=0) ¥ goiall Jadl J DA) =0 o< 1A 4
s soba da led (3.1) O g 1A s e 055 (10.3) DY aleall da ghaial
Pn(x) =0

Lta e Jola ) dsw (10.3) @¥aladd) Zashia JULG p(1) = 0 S 1 -
Lodie } afs Al 4 ta pe Jola L (6 (1.3) Aaleall old 13 il
Llalsill ol gany jh Alalaal (5 jhm ye a5 4D A€ daslaa (58 D(R) = 0
Adlaall dgllae Ay A alae 05 @(x) = [ k(x,Y)O(Y)dy Ailaiall
Alalsll

-
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(3) A

S g(x) # 0 ke

[ 90w =0, [ 9001 =0..... [ 90Imatr) =0 (14.3)
D D D

J sl ST 3aalaia g(x) Lﬁi

i), v2(y), v, v (V) (15.3)

Salb

Aslaie Adad EValae pUas 1) (11.3) Aolasll 5l jia s5bs By by, .o Ry,

SAlad) s Caal e@A‘JJ\ USA.J uLt:\Ju\ u\ﬂ\aﬂ

W (o =ay = = a, =0) vaygiall dall UL D(A) =0 oS 1Y -
D () = 0588 an g a1 (1.3) Aaladll 8

Lsta e dols ) Jsm (10.3) @¥aladl daghic B D(A) =0 o8 1 -
ANl A jhia e Jsla Ll (555 (1.3) Aalaall 5 Al

Cly )8 aadiw dhatio Gy il o Jpasll dhadidl e 31l co @i g sl

JEal e e 5 (1.3) ALl Alsladll (o oy i) dilids

945 s oy i

Aoy yail) Aliadiadl) 8) gil) Cly 483w
KPP Y P

Andd sl Alli oy 8 J 5l
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[27] <[26] [25] LsLU Aees i @
(Taylor series approximation)
@ e @ Al L Aluls alxial Gld adde o 5 x O iie 8 Alaie Al B(x, ) £2

058 y owddl el g glase SR 2

Taylor (@,y,a)

= Y D pxa) (16.3)

n! ayn
0

S
Il

Taylor(®,y,m,a)

m
_ y-a)" oan
_z nl  oy" OCx,y
n=0
o) (17.3)
Ly il el @ ) stadd) AU sie ANl gt sall L5 AL Sl e 13

Aalg A LSS Aol el
b
B(x) = glx) + /1] k(x,y)0(y)dy, a<x<bh (18.3)
ale «(k,y,a) o5l alasinh y A o 8 alde JSG e k(x, y) AU (S
KEy) = ) a0 - ' (19.3)
i=0

ade «(k,x,a) J}gue\mu,x@égm}i
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k@) = ) 6 — o) (20.3)
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Aslaall ¥ Caphall d6¥) m agaall S 5all g sanall ) il ko (3, y) wad)
(19.3)

n—1
ka6 ) = ) i@y - @) (21.3)

2 Alsia 3l g s ko (x,y) ¢(2.3) Aolaall (A e il aladiuly
ul(x) = qi—l(x): vi(Y) = (y - a)i_lr [ = 1'2' Iy (223)

coa (13.3) & (14.3) ball i

b .
akf (y — @) g1 (y)dy

ai—lz

n

k=1
b .

=f 9y —a)tdy, i=1,..,n (23.3)
a

%\ﬁ@M\M@nM\}

0u(x) = 90O +2 ) iy gi) (24.3)
i=0

ofiad Al claadldl (Ja A e dine Lbua o3 (23.3) Al 8 el
A5
[a, b] 55l IS (paai Sl

sy =a 3 el all 8 6 LS ) i sSE OOLS aare -
(Sl (e BL Al
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[28] <[22] (A Al) py i A8y k2 -2 - 3
(Nystrom Quadrature method)

el Jalaall goaall JalSall ol e il @l Aallaal oy it 48k adiis
b Bl IS Jafii 2 gy sl tal) Llas de ganse die Yl Jall slag) &3 (1.3) Aalaally
smlally Leoddth dilee (8 Aoy yiiad daaall A8k Aald JleSiud Aapa Aaul 52 D
(g3l JalSall 022t o g it 38 yha o) 50 (1.3) AlalSall ol gy 53 Alsbaal Jal) alay

kn
f h(y)dy ~ Z W1 (), h e C(D) (25.3)
D =

LS omall JalSil ) iy o€ D JSE gaand) S () (m i) 7y ] Al 3L 50

.n — oo

L\.:\;\J Xnj=Xj ¢ Wpj =W Tual dusy n landl Gagyall Caday oyl
Liean Sell asasdom o) g oS ek, = k

sard R™ 535350 Ao gena s dilke ()55 P Ledie x,y € D JS) dlaia 315l Al g
(25.3) Aalaall & x ill Jaladal) Lendiives (1.3) Aalaad) & JulS3l) ity m > 1
saaa Adilee e J geanll oSy

kn
Dn(x) — /12 wik(x, %) 00 (%) = g(x), x €D (26.3)
j=1
dall (3.1) Adaall B(x) el Jall Ly Ma (68 @, (%) Adladll Ja am,y

Cumy x el ) xjs Gl &S L 1) e sl (S (26.3) Al Al
si=1,..,k,
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YAl (1e Ao gana ) L) A (S (26.3) Ay phall o8 A x; € D

kn
Q)n(xi) - AZ Wj k(xl,x])¢n(xj) = g(xi), [ = 1, vy kn (27 3)
j=1

daaia e 3 )le Jseaal Ukn:\-‘-‘)”w:‘h“)h‘@J

@n = [Qn(xl)i ey QH(XQ)]t

2 agle Jasd 1385 1(27.3) Aabaall Ja iy (26.3) bl 06 @, (%) > IS
da 2 ¢(27.3) Aaladl) e u = [y, v, U]t da IS0 Al Ll xie @ ()
& @, () 3 dadl Ay Lol 1)) dgaial) Ll die a3 3 (26.3) Aalaall 2a
ade (%)) Loiall Bl die Lgad Aaul 5 st (Sa @), (x) 4o ¢(26.3) Aalad)

Coyni (27.3) Adbaall g 1 Ja

kn
u(x) = /lz w; k(x, xj)uj + g(x), X €D (28.3)
j=1

TSN drpmy Arpuall 028 (o yai

kn
u(x;) = /12 w; k(xl-,x]-)uj + g(x;),
j=1

=u; for i=1,..,k,
s JSin) dipa e (28.3) Aaleall
sl (o gl JaSin¥) 138 aladiuly (27.3) Aaleall Jall yiad g (0 5 a1 5 shadll

su o b A8l dnlha (26.3) Aaladdl da g 3oke u(x) ob @i ¢(28.3)
u(x)
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A Ll Lt (S (27.3) Asladl ade @ (x) Jal (pe Al
(I — AKD) ¢, = g, (29.3)

Ladie

Br = [@n(x)]", g = [g(x)]%, K = [k(xi'xj)];

D = diag(wy,wy, ..., Wg).

alrall dpny yill A3y Hkall 335 0S5 o Sy (1 — AKD) b Badb () 2dddl (e
il 13 (] — AKD) 133s il e Jpan) LiSey Gl dhaidle 258 cand (25.3)
LSS IS4 43y (25.3) Aalall

kG, y) 5 koo acind Lls Yl 38y ST a1 43y ylall clS 13 clld ) daLayly
9(x) s

gLl | 0 gb Alslaa Jad Agasal) 3k (22 3 — 3

Gl s ¢ A g sl e ALall) | il Y alaa Jad 58 sie paaad) Gl (he el aa gy
Za ) e U 5S — il A ARyl (o aiall 4 a8 dpay il &y lall 15kl ol
Aol Aa (e S — gl et

[29] ALl | 3 g8 Alstaa Jad Ay 0 A5y ) 1 - 3 - 3

r ) & sl e ALl )yl g8 Alalaad (gaaedl Jadl sy Lo i 13
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O(x) =gx) + ]xk(x, y,0(0))dy, a<x<b (30.3)

k s da,b] &b so<iue g(x) D Gls ([a, b] saasall 58l ogllaa Jall () 2 iss
o P 4 Akl (Lipschitz) & bsyd @iy a <y <x < b o 8aiee
Llad 315l il 1A 30 50 (30.3) Aabeall dn gy paine dall Ol el Cogus Ja g )

k(x,7,8()) = k(x, )0 + ko(x,y) (31.3)

b laisl (S5 dhad (55 (30.3) Al oy Jsill (K alig <y < x < b

[

B(x) = gkx) + ka(x, Y)O()dy, a<x<bh (32.3)
Ladic

763 = 9@+ [ a(xy)00)ay (33.3)

Alaall |, Alladd lgdle G jniall Rasall U3 (32.3) Alilaall g Jebsii o) con
g (x), g () O Dsaslly Daall 2y O Cogua

[30] Ahaidll i laall day ) 4Gy Jal)

an Al 3acld (30 )k e (32.3) Aabeall & JalSl o pla w8 s gl Jall &l ghad
Lol Jbal b o) bl (e )y Al G s y priall daally JalSS 6l jaly @l
oo be h=(b—a)/N O & x=x; =a+ih gasn Jals vy 5 x b sk
Aol 3 JalSll Calal el 5 JS Cu i llia ol ey (e ety A 3 5lal) Jsha
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1Bk oo (32.3) Audbeal)
f k(x;, y)0(y)dy = hzwijk(xi':)’j)@(Yj) = hzwijkij¢(Yj) (34.3)
a j=0 j=0

OY ol ALJAM ‘_A;\ Lﬁd}ﬁ 4:&_“\.1)3\ saclall sda | = 0’1’___’N , Xi =Y dua
Al

B(x0) = g(xo0),

B(x1) = g(x1) + h[wiok10@ (Vo) + wi1k110(y1)] + E1,y(k(x1'3’)¢(3’)).

P(x;) = g(x;) + hz wiiki0(y;) + Eiy (k(x,»)0(»)), i=0,12,..,N (35.3)
j=0

Ob ol A 13 A sl sacldll b Undd) Gojla i Ei,y(k(xi.y)®(y)) G
o e geadll o2 Ja 7 sas ki |2 Y (1 — hwyky) # 0 5 Aegs E;
Gob e O(x;) s e ske @ s i =0,1,2,..., N 5 @; 1 OValedl
o eGadal) Jemis Tan T8l yiay (gaaall i slul) 138 (of eaial g1l (g el 2y gl
Ly wy; Al (weights) ols¥) sl (& clguall (an dsmy (e o2l
Aiill A il sae@) G0 B {wyj, = 0,1, ., 1) desendl G ISV 4l
[0, ih] 38l (amd) & sluiia Lalés) (Newton-Cotes) o sS - (s g sil) e (i 4+ 1)

-

.[32] 5 [31] [30] —ioaiall Andidacle o
(Trapezoidal rule)

= 2l A i due 5 58 Y (@, b) 5 adisg < b € R s 5 13
Copniall anisacld B Jilbale cx; =a+ ((—1h,1<i<N+1 o &
&3&5@;\_)5?3:1
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b N-1
f gx)dx =h [w + z g(xi)] (36.3)
a i=2
ALl |yl b s Jad Cojaiall 4nd i Aokl g
() — A f k()P dy = g(x) (37.3)

ol Joanli oy, Rais (37.3) 4 (36.3) Limisas

i-1

O(x;) —h |:k(Xi,a)@(a)-l-zk(Xi'xi)@(Xi) + z k(x;,%)8(x) | = g(x) (38.3)

j=2

1<i<N+1 x;=ax..,Xy31=Db

-1
~HC09(0) — h Y k(i )0(x) + (1 - ) o) = g ()
j=2
rel) a jlaaial (S (37.3) AalelSill |l g8 Alslae i oxy =@ ¢ 0 = 1 daddly
?(a) = g(a)

P20 (x) + (1 - R 9y = g(xy)

jsle Janti (f = 3 Al

_hk(x;,xﬂ@(xl) — hk(x3,x,)0(x,) + (1 - h@) D(x3) = g(x3)

o) Al e Jast Aledll ol xic
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B =

[

AD =B
WS oSS 1< jSN+1, A=(q;) Hhad ) dn

aijz—hk(xi,xj), 2S]Sn+1

ta; =1-— gk(xi;xi)

all = 1
\qi1 = —;k(xi,xl), 1<i<n+1
0
a,, a,, 0 .. 0
A=|a, as, zg ... O
_aN+1,1 aN+1,2 aN+1,N+1 i

[9(x1) = g(a), g(x2), ..., g(xn11) = gD,

= [(D(a)! Q(xZ)! =y Q(xN+1)]T .
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[33] ¢ [15] A Al UigS - il A8y k2 -3 -3
(Runge - Kutta Approximation method)

A1) al) Jilial gaae Jilas 35k e (30.3) Aabeall Jal S - il 5k e
i=01,..,N, x; =a+ b& xc dall I @il Claa Gl e agis
[xi, Xip1],0 = 0,1,2, ..., N 3o sie Jal&s die iy 8 L) 335k e <jh

x;+6:h =012,..,N-1 r=12,..,p—1,

0=0,<6,<<6,,<1
Ay el Al (p — stage) p A el dalal) LS — =il alasiad salely
0'(x) = g(x, 6(x))
@(a) = @,, (39.3)

p—1
O =0+ h ) Ayl (40.3)
i=0
r—1
krl' =g (a + (i + Hr)h,(Z)i + hZAnkll>, r=1,2, P — 1 (413)
i=0
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0, r=12.,p—1
ZA”:{{’ r”:p} (42.3)

MJ@Q\Q&"kﬁ@m\MM\ _x:xT:a+rhﬁcd;ﬂ;.u”JﬁchJL_m ®T¢'°
[ UIS (40.3) Aabaall LS 22is ¢« B(a + (I + 6,)h) S S
p-1

Div1=0; + hz Apig(x; + 6;h,Bi10,) (43.3)

=0

s thiy dame daja) Sl cu i Gaiadl Llee W Lid) oy 6,4, < el
Giay Jaoall s AdHhll As 0 Jia s Wolas) &5 ) g ad Gaed O(RIFD)
Aasbedl e el priall Adadll e SVl (e de sana

3-1Jua
e (43.3) daladdl A p = 2 Ljial ) gl yiL
Bir1 = O; + hAzog(x;, ©;) + hAz g(x; + 6,h, 0; + hA10g(x;, D).
(et Jsanll G jaiie e AL ) oL 4 5l aladiuly
Dir1 = @i + h(Az + Az1)g + h?A31(619x + A10990) + O(h%)
A 5 gl e
9=9x,0:) , ngW, gﬁ%f")
:L;JC\]\ o yhall c.qz\h\.z.d\ e ol 13 &5 Hlew

ie1 = B; + hg +3h%(gx + gg0) + 0 (h®)
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tob LS Y alae A3D8 (he 4 S Ae ganna Ll (oS5 JUlL

AZO + A21 = 1
Ay10; :%
1
Az1Aio = 2

S SeY e ae Gt SVl o3 Jslall (e Sl 2e a4l il ) (g
Odla e IS8 HlieV) &2l Al ds el 5 S — il Aalaa A0l s )
‘laa 5 dpalall dpalill (o (pail

ot Al A5kl (b ¢ A,) = Ayy = 1 Leaie

Diy1=0; + %h[xi: 0; + g(xi41, 0 + hg(x;,0))] (44.3)
o

i1 =0; + %h[g(xi: 0) + g(x;,Bi41)] (45.3)

Biv1 = 0; + hg(x;, 0;) (46.3)

EUNUURS I PR NI g

LaS sl Alaxall Sl 43 Hla o deddiieall 45y 5kl (6 A, = 1, 4,0 = 0 Ledic -
et

Biv1 =0; + hg (xi +2h,0; + %hg(xi'(z)i)) (47.3)
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-l paial (pe AN LA Blana a1 (4 )))

— A8 5k e g s il lanad (Say (43.3) Ualaall 8 Ledy jai o3l 48 )

-l Jall 15 <
B(x) = g(x) +f k(x,y,0(0))dy, a<x<b (48.3)
(L (S5 (48.3) Asledll B x = x; pass

a+ih
B(x;) =g(x) + f k(a + ih, y,@(y))dy, i=01,..,N

a

i—

a+(j+1)h
=g(x;) + k(a + ih, y,(b(y))dy, i=01,..,N (49.3)
=0 a+jh
Al Al e () ) xy s Slaa (S
i-1p-1
O(x;) = g(x) + h Z Apik(a+iha+ (i +0)h0)4p,) (50.3)
7=0i=0
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A dxpall 8 (48.3) Uslaadl LS Sy x € (X7, Xp4q) o8 S OV

00 = g0+ Y [ k(xy,00)dy +

]:O ]

f k(x,y,0(y))dy (51.3)

Xj

el JalSill Gy Sy x = x; + 0k, v=1,2,...,p — 1 s b 2y
1Gak o (51.3) Aaladl

v—1

xi+6,h
f k(x; + 6,h,y,8())dy ~ hz Ayik(x; + B,h, x; + 6:1, B116.)
X P

i i=0
rob LS Lo il (S (48.3) Aabaall U S — il ) 43y yha o) s

®i+9i = g(xl + th)
i-1p-1
+ hz Apik(xi + th, x] + Hih, Q)j"'ei)
0

j:O i=
v—1

+ h ) Ayik(x;+ 6,h,x; +6;h,0y.,), (52.3)

i=0

i=01,..,N—1, v=12..,p—1
ag ,hl) & 55 2aaT Arj: Qj’a“_a\):\ﬁdb @(a) = g(a) Cua

j: 0’1""'p - 1" r= 1)2;-"1p L"_L\A




&) A )

)il g8 g al gy B lalaal Jad) cilia ) 53
G £ gl dolalsll

Algorithms for Fredholm and Volterra

Integral Equation of the second kind



g5 (e Aglalsil) ) il g g al a8 (lataad Jad) cibia J ) oA - saal Y )
LA
dadia 1-4
Aol a8 dlalaal (a2l Jall 2-4
Dl AL 31 51 3yl aladinls gasall Jall 1-2-4
o5 s iyl ala2idy (2320l Jal) 2-2-4
Alalall ol a5 Aobaal Uadll Jilas 3-4
FlelSall |y 8 Alaladd (s23a]) (o) 44

o jaial) 4nd 3acl8 A5 Hha aladiily ganall sl 1-4-4

LSS - gl ARk phadiuly gaaal) Jal) 2-4-4






S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

dlaxia1 -4

Jiloaall G5 Jgla G Jpmasll eyl Al laindy alas LS Gaaall 5Ok o
A5k U< Undl) ke agfi g dpcaly )

155 a8 Aol o 0 ) sl gnandl (5B By o g5 o gue il 0 3
ERRES

ool 222l Jall alagls o bl Cogu agle bl L) 8 B2l (5l (o et o3
chtaill Jally L laa s Laae ALY

Ay s 5 el ga b Aslaal g yiesss A8y sl g Juadll LG 81530 Ay 5l (panial Lpanall (3l
ATl asdi Chgw adde o pilgd Aldlaal WS - il AGyhay cajaiall 4l 3acld
Gl (ke dal) daliadl Ayl el aaly WAS Ay 485k IS0 el Gl ) 53l

B e aaad Ay &l Jgladl g daaall Jslall 45 e g cilblaall o) 12 Y

Aalal<il) al gady y8 dlalaal gaxadl Jali 2 - 4

1-4J4

S g sl e Alalill ol gan 5 Alalas

D(x) = —% cos(x) + %ffcos(x —y) 0(y)dy (1.4)
0

e SJL_K; (14) Aalall 6\;;43\ Jall

@(x) = sinx




S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

Sl ALARL 31 gil) 48y o aladindy gaaml) Jad) 1 -2 - 4
(Numerical solution by using kernel degenerate method)

sl Alliie aaatily y riall Al s e (ac, y7) Bl alsial e Jand Bl

m

Taylor(k,y,a) = %k(x,y =a) (2.4)

n=0

g sanaS Ll Bale) (Say 8 gall calaia¥) 1agn ¢ bl Al gan 23e eyl s
3 Al Al e J Al Baad 5 o iliadia Cpilla

m-—1

k@) = ) w@n) (3.4)
i=0
w1 () = (3) k(@) (4.9
S
viei (=@ -a)L Vi=12,..,m, (5.4)

S IS Ry s ecy; ol s LiSay 4o

b b
Cij =] vy (y)dy, h; =J viygy)dy, i=12,..,m (6.4)

a a

Jranti gyl A83all 5 (2-2-1) 5252 gall QELll alasinly

(Xl'—/lzcij(lj :hi i=1,...,n (74)




S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

‘QL(LAA.HQM d&&@u&)\ﬂ‘a&eaqeﬁ

Ala;] = H,

A=1-AC
Baa gl dd ghima oyt [ Cusy

C=lcy], Vij=12..m,

48 gdinall g
[a] = A“H
3o 0, Jal
et
Om() = 90) +2 ) tt110i®) (8.4)

Matlab alasiul; dduadiall 3) il A8y ha i 55 A 43 )5l )
1-44a)05

a,b, 4, g(x),k(x,y) Jaa|
m bl ALl 3 gas aae JLAA
y 1 dpally k(x,y) 3) il ol alaial um;i -3

1 1
N =

m
Taylor(k,y,a) = %k(x,y =a) (9.4)
n=0




S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

i=12,..,mxsv,(y) su;(x) 25 @

. . b .
Lk=12..,mscy = [ v;(Du(y)dy <=l -4

. . b ;
i=12,..m&sh = [ v;(y)g(y)dy ===l -5

48 s0ndll a6
1 - ){Cll - /1C12 I - ){Clm
_AC21 1 - ACZZ - ACZm
A= : : :
—ACm1 — Acima 1—Acm

A4 siadl D(A) 2ad) sl -7

12 sshall M caldl g(x) # 0 oS 1) -8

SV el giia e Jlall (e 230 Lavie daglaidl 8 D(A) = 0 QS 13 -9
15 3 ghaall

15 sshall Ol cadl cqy = @y = - = @y, a5 da L kil 10

15 5shall N cadl ch; # 0 gS13-11

sshadll I cadl (Jslall e ledY dae asie dashidl (i D(A4) = 0 08 13)-12
A =y = =y = 0wy daldaaghidl (15

15 5shall A caadl ¢ ida da Ll Gal dashaiall D(A) = 0 ¢S 13)-13

[a;] = [Ay ]t h]" 058 deshidl da-14

4le

g

On() = g0 +2 ) ()

.[25] 4l -15
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Sa k(x,y) = cos(x — y) Lllsall ilaall 31 il Je (4 — 1) el 5 Gudaiy
Agaa 51 LU dlude alaasiuly alxial Je Jaall

Taylor(cos(x — y),y,5) =

cos(x) + y sin(x) — %-cos(x) — % sin(x) + 4 cos(x) (10.4)

u; (x) = cos(x)

u, (x) = sin(x)

us (x) = == cos(x) (11.4)
Uy (x) = = sin(x)

us(x) = 5= cos(x)

3

v =1 0=y v:O)=y% nul)=y> v =y (12.4)

A il ae | Caoblall geals o g

48 a4l

1.0000 1.0000 -0.5000 -0.1667 0.0417
0.5708 1.0000 -0.2854 -0.1667 0.0238
0.4674 1.1416 -0.2337 -0.1903 0.0195
0.4510 1.4022 -0.2255 -0.2337 -0.1895

0.4793 1.8040 -0.2396 -0.3007 0.0200
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-0.2732 -1.2732 0.6366 0.2122 -0.0531
-0.7268 -0.2732 0.3634 0.222 -0.0303
-0.5951 -1.4535 1.2976 0.2423 -0.0248
-0.5742 -0.7853 0.2871 1.2976 0.2413

-0.6102 -2.2970 03051 0.3828 0.9746

0.9251
1.0775
0.8782

1.7330

(Dm(xj) = _?Zcos(xj) +%[ai][ui(xj)], i,j=12,..,m

(b—-a)

Y1 =X S

x]_:a

4 sind)
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em =5 bl dludu 3 oa GlS Ladie gadal) Jall g masaall ol (i (4 - 1) Js2adl
Agaaal) 45y Hlall 03] i) Uadll gy XS

(1.4) Aabaall T - 4 Apa )58 pladiuly (g23all 5 manaall Jall 3(1 — 4) Jgad

St Ja A Ja W)

x y1 = sin(x) Y2 E=|y; —y,l
0 0.000000 -0.116300 0.116300
0.4 0.389418 0.279000 0.110418
0.8 0.717356 0.630232 0.087124
1.2 0.932039 0.882007 0.050032
1.6 0.999574 0.994379 0.005194
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1.0 —a— Approximate Solution /‘
—a—Exact Solution /V
0.8 . /
v
0.6
7
g 1
2 04 /
=
&
0.2
1 / Numerical Solution of Fredholm Integral Equation
0.0 / of 2nd Kind Using Kernel Degenerate Method
-0.2

02 00 02 04 06 08 10 12 14 16 18

values of x

(1.4) Aalaall 1 - 4 4 ))& pladiuly Lﬁ;md\; c.)a..a” Jadl :(1-4) Jséd)




S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

Absolute Error

0.12

0.10

0.08

0.06

0.04

0.02

0.00

..\
Absolute Error
Fredholm Integral Equation of 2nd Kind
Kernel Degenerate Method
1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
02 00 02 04 06 08 10 12 14 16 18

values of x

(1.4) Ul (1 — 4) 4ol sal alasiiady Uadll il (2 — 4) JSil
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2.9 e 48y g aladinly ganad) Jadi 2 -2 - 4

(The Numerical solution by using Nystréom method)

Al ALl Alslaal (ganall Ja) Slas

O(x) = ~2cos(x) +* J cos(x — ) B)dy

(—Zcos(x)) Al X5 cos(ox — y) Blsll oy Vs any ag i 48y 5k aladiul
f: B(y)dy JalSll i LiSay ¢ oy 4l Gai ) a6 s (4585 O g
e @ S < b d el 13 Aty L P W B(y;)  Ama il 48k alasiul

ol oKl a5
O(x) =gx) + Af k(x,y) @(y)dy, x €D (15.4)
D

c.ua.\] L@J\)ﬁ;\ USA.J :\a_u.al\ Y

D,(x) = /12 w; k(x, xj) (Dn(xj) + g(x), (16.4)

j=1
(15.4) Aaeall B(x) sl Jall w58 Ja 568 @, (%) S

si=12,...,n Cexx S xl-'s a3 o3 e 1) adde J pandl Sy (16.4) Aalaad Ja)
Y alaall (e de gene I Ll 381 (S (16.4) Aalaal) A3y Jlall o3 g < x; < b

Dn(x;) = )lz ij(xi,xj) Q)n(xj) + g(x;), (17.4)

J

saill e 48 hnn (S5 (17.4) Aalaal) LS (S LS
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®=AKD®P+G - ®—AKD®P=G - (—-AKD)®P=G (18.4)

® = [0, (x)], G =[gx)] K= [k(x;,x)]
D = diag(wy,, Wy, ..., Wy)

Sl IS SIS Bl ¢l oy 55 el dpd Bacld 36y alaainls 2l ye

b n

j k(x,y)dy = Z w;k(x;,x;) = DK (19.4)
a j=1
i=1

JA“mh&_\J;AchLSJWMJM\:\ﬁM\D& ﬂmJQM\hM\@Du&M
=0 iyl il s e adiad QIS ([, B] 5l dpaal) adl Ll
n

xs Sy o, j =1,2,.,m Sus k(x;, %)) Glo gsini k Adshadl jualie
Xp=asi=12,..,n Sex; =a+ ([ —1)h e dpasll (Say

Matlab gl s aladiuly a g e A8y ph it 0 dpa ) 5a1)

2 — 4406

a,b,n, A, g(x), k(x,y) 5

b—
h—=2—%
n

X, =a,x,=Db
fori=2ton—1

xi=a+ ({—1)h
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end
fori=1ton
G =9(x)
S; = X;
aokill dgadl Dy =h—> D
forj=1ton

Kij = k(xl-,xj)

end
end
[ = 3aal) 48 gdiadll
ths - I — ADK

thsx@ =k 1 @ —-iky
[5;,@;] 2= p(@) 4leSind 350al 52005

ol Uadl) o SIS g = 50 wie o 31 Jal) Sl monall Ja) cp (2 - 4) Jsad)
Aa0el) 4y Hlall o2a aladinly
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(4.1) Aaaall 2 - 4 430 s phadinly gaaall 5 anall Jall 2(2 - 4) g

x il Jall Al Jall Uasll
y1 = sin(x) ) E = |y, =yl
0.000000 0.0000000000000000 0.0314700000000000 0.0314700000000000
0.031400 0.0313948403970313 0.0627745028482724 0.0313796624512410
0.062800 0.0627587292804297 0.0940402606996792 0.0312815314192495
0.094200 0.0940607456510093 0.1252314396606800 0.0311706940096711
0.125600 0.1252700295083950 0.1563128646998360 0.0310428351914411
0.157000 0.1563558122752480 0.1872500196478060 0.0308942073725584
0.188400 0.1872874471313600 0.2180090471973520 0.0307216000659918
0.219800 0.2180344392277120 0.2485567489033350 0.0305223096756229
0.251200 0.2485664757507000 0.2788605851827160 0.0302941094320162
0.282600 0.2788534558069050 0.3088886753145570 0.0300352195076518
0.314000 0.3088655200989320 0.3386097974400200 0.0297442773410877
0.345400 0.3385730803630620 0.3679933885623670 0.0294203081993056
0.376800 0.3679468485397000 0.3970095445469630 0.0290626960072631
0.408200 0.3969578656478570 0.4256290201212680 0.0286711544734110
0.439600 0.4255775303352060 0.4538232288748480 0.0282456985396424
0.471000 0.4537776270755450 0.4815642432593650 0.0277866161838204
0.502400 0.4815303539859020 0.5088247945885850 0.0272944406026831
0.533800 0.5088083502358190 0.5355782730383710 0.0267699228025519
0.565200 0.5355847230218260 0.5617987276466880 0.0262140046248625
0.596600 0.5618330740804860 0.5874608663136020 0.0256277922331164
0.628000 0.5875275257138920 0.6125400558012770 0.0250125300873856
0.659400 0.6126427463019450 0.6370123217339810 0.0243695754320358
0.690800 0.6371539752762650 0.6608543485980780 0.0237003733218129
0.722200 0.6610370475311160 0.6840434797420360 0.0230064322109196
0.753600 0.6842684172472760 0.7065577173764210 0.0222893001291444
0.785000 0.7068251811053660 0.7283757225739000 0.0215505414685341
0.816400 0.7286851008657490 0.7494768152692410 0.0207917144034918
0.847800 0.7498266252927480 0.7698409742593120 0.0200143489665637
0.879200 0.7702289114015530 0.7894488372030810 0.0192199258015285
0.910600 0.7898718450068800 0.8082817006216160 0.0184098556147365
0.942000 0.8087360605531300 0.8263215198980870 0.0175854593449569
0.973400 0.8268029602064790 0.8435509092777620 0.0167479490712835
1.004800 0.8440547321900900 0.8599531418680110 0.0158984096779210
1.036200 0.8604743683443750 0.8755121496383040 0.0150377812939287
1.067600 0.8760456808949790 0.8902125234202110 0.0141668425252317
1.099000 0.8907533184119660 0.9040395129074030 0.0132861944954363
1.130400 0.9045827809444730 0.9169790266556490 0.0123962457111764
1.161800 0.9175204343159050 0.9290176320828230 0.0114971977669175
1.193200 0.9295535235655870 0.9401425554688940 0.0105890319033071
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1.224600 0.9406701855236070 0.9503416819559350 0.0096714964323285
1.256000 0.9508594605064700 0.9596035555481190 0.0087440950416491
1.287400 0.9601113031220170 0.9679173791117170 0.0078060759897002
1.318800 0.9684165921729680 0.9752730143751030 0.0068564222021349
1.350200 0.9757671396493190 0.9816609819287500 0.0058938422794317
1.381600 0.9821556988007240 0.9870724612252310 0.0049167624245071
1.413000 0.9875759712809230 0.9914992905792210 0.0039233192982981
1.444400 0.9920226133571400 0.9949339671674920 0.0029113538103520
1.475800 0.9954912411783650 0.9973696470289220 0.0018784058505561
1.507200 0.9979784350972940 0.9988001450644820 0.0008217099671876
1.538600 0.9994817430416920 0.9992199350372500 0.0002618080044419
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1.0 —
— Approximate Solution
— Exact Solution (sin (x) )
08 Vi
0.6 /
- /
k)
o]
=
0 04 /
N
0.2 /
Numerical Solution of Fredholm Integral Equation
of 2nd Kind Using Nystrom Method
0.0

02 00 02 04 06 08 10 12 14 16

values of x

(1.4) Aalaall 2 - 4 4 ) ) 62 aladiily ol @;.41\ Jall :(3-4) Jséd)




S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

Absolute Error

3.5x10°
3.0x10° e
‘h.‘\
\\

-2 \\\\

2.9x10 N
\\

2 \\

2.0x10 <
\
AN

2 h

1.5x10 N
\
Absolute Error \
1.0x10” - Fredholm Integral Equation of 2nd Kind AN
Nystrom Method \\

3 \

5.0x10 N
\\
0.0 hN

02 00 02 04 06 08 10 12 14 16

values of x

(1.4) Wiaall (2 — 4) d3e ) sall alasiialy Uadll il (4 — 4) JSi
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[35] « [34] pssimasi Al b Unl) 1t 3 - 4
(The error analysis of the Nystrom method)
o yaiall 4l Agoaell JalSil) 43y U e 1)
fbc)(y)dy ~ hi " B(x;) (20.4)
a i=0

i=01,..,nkie x;=a+ih s h=22%

n

Ay panll ke ) o) JB (g) a5 JYaall o) Gy B el
Uaal

b n )
f @(y)dy — hz "o() = -V (e,), peCab], n>1 (21.4)
a i=0

-

dan 6 Uad Bapin aa g Ll [, ] 5idl) b o A g, ua

b ” )
f ?(y)dy — hz "O(x;) = — %[@’(b) - ¢'(@]+ 0", B€cab]l, (22.4)
a i=0

Aalalill Y alaall e @llh ok o Ladic

b

B(x) = g(x) + Af k(x,y)0(y)dy, a<x<b (23.4)

o 5 e sl e o

Dn(x;) = glx;) + /’lhz " k(xi,xj)Q)n(xj), i=01,..,n (24.4)
=0

qp,=n+1 &) dus
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2 ‘51433 s fiad JLSi) drva
n
Dn(x) = g(x) + /’lhz " k(x,xj)(bn(xj), a<x<bh (25.4)
=0
@aaadl Jalsill Wad e aaiay Jal) (o) de yus g

_ _ _ h*(b-a) [3%k(xy)0(y)
K-K)0y) = ——; 7 e ) (26.4)

0058 (gl JalSll s (22.4) Asadd) (10 g, (x) € [, b] S

2 x y=b
(K= Ko@) = - 35 [*52] _ +o0t (27.4)

k(x, y)D(y) Cum ¢ O(h?) A @ ES a5 yiud 48 yha ) a5 ¢(26.4) Aalaall (10
X i) b dudlada s o uiall ually SN S ALE 5 5 jaiuna

CulS Eua A giie il e Juanti (2 - 4) el sall Gubad aladiuly a3l gl o el
0.0003 < O(h2) G3laall 2l (5 pusill Zugdl
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Alaleil) |yt gd Alslaal caxad) Jad) 4 - 4
2 - 4 Jua
S g sl e |yl il ALl Alalaal
P(0) = 2e* —x 2+ fox(x ~ 1)0()dy (28.4)
oe ke manall Lela
B(x) = xe*

i jadall dpd 3ac B 48, b aladiuly gamli Jali 1 -4 - 4

(Numerical solution by using method Trapezoidal rule)
Matlab g aladinly Cijadall dpdi 3ae18 A8yl (i AN Jall daa ) 55
344 A

[a, b] 381 5 558l e 1y 4 el ol yadl) aae Jaal -1
[a, b] 5l asaa J&ai g, b

Matlab <t » & g(x) o= =3 dla:gen_g
k(x,y) o= »x3dla:gen_k

_(loop = 10) MLHA Q\)sz\ﬂa -2
h:@zjﬁ\ Jsh cwal -3

x = linspace(a,b,n + 1)
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g_vec = gen_g(x) Dl axic caal -5
@_vec = zeros(size(x)) ¢sbw Ly Jall 4 pa -6
@_vec(1) = g_vec(l) 4l xic Jall 43t pua -7
i =1:n el -8
@_vec(i+ 1) = @_vec(i) LS Aaleal J Y1 paal)
k_vec = gcn_k(x(i + 1), x(1:i + 1)) * @ vec(1:i+ 1)
for j = 1:loop
Jall Aan¥ Capaiall 4ud 48 Hla (3l
D =0Q vec p=-9
Jall ol i laxie il eiall A0l Wiy () saaad) Jal mlill 10
g Al e kel 1,0l 6 (28.4) Uabadd Jall dlay) (Sar 3 - 4 el &) aladily adle
Ll aae S Cuns (3 — 4) Jsaall b ddiall 5 daaal) bl b il 23 Cuay o S
Lasll 4 &) o) i 5y = 20




100

(28.4) Adaall 3 - 4 43 )l 53 aladindy (sa22l g asall Jadl (3 - 4) Jgaa

S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

x sl Jall A Jal) )

P(x) = xe* Pp(x) E =10 — 04l
0.000000 0.000000000 0.000000000 0.00000E+00
0.050000 0.052563555 0.052482502 8.10531E-05
0.100000 0.110517092 0.110365618 1.51474E-04
0.150000 0.174275136 0.174156634 1.18502E-04
0.200000 0.244280552 0.244240128 4.04236E-05
0.250000 0.321006354 0.321047873 4.15186E-05
0.300000 0.404957642 0.405058838 1.01196E-04
0.350000 0.496673642 0.496799189 1.25547E-04
0.400000 0.596729879 0.596842288 1.12409E-04
0.450000 0.705740483 0.705808692 6.82083E-05
0.500000 0.824360635 0.824366154 5.51865E-06
0.550000 0.953289160 0.953229624 5.95356E-05
0.600000 1.093271280 1.093161248 1.10032E-04
0.650000 1.245101539 1.244970367 1.31172E-04
0.700000 1.409626895 1.409513518 1.13377E-04
0.750000 1.587750012 1.587694435 5.55772E-05
0.800000 1.780432743 1.780464048 3.13052E-05
0.850000 1.988699824 1.988820482 1.20658E-04
0.900000 2.213642800 2.213809058 1.66258E-04
0.950000 2.456424176 2.456522294 9.81179E-05
1.000000 2.718281828 2.718099904 1.81924E-04
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0 | |
=== A pproximate Solution
25 ——Exact Solution
2.0
c 15
0o
et
=
@]
A 1.0
0.5
Volterra Integral Equation of 2nd Kind
Trapezoidal Method
0.0 Numerical vs Exact) Solution
| Libyan Academy School of Science Mathematical D epartment |
T T | T | T | T |
0.0 0.2 0.4 0.6 0.8 1.0
values of x

(28.4) Aalaall 3 - 4 el 3 pladiuls (gaall 5 sl Ja) 1(5 — 4) Jsid)

101



Error

102

2.0x10*

1.5x10"

1.0x10*

5.0x10°

0.0

-5.0x10°
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| | | |

Volterra Integral Equation of 2nd Kind
Trapezoidal Method

Error

| Libyan Academy School of Science Mathem atical Department |
T T T T

1 1 I 1 I 1 I 1 I
0.0 0.2 0.4 0.6 0.8 1.0

values of X

(28.4) Ualaall (3 — 4) 4ae )yl sall alainly Uadll il (6 — 4) JSid)
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LS - il 4By sl aladiuly gaand) Jali 2 - 4 - 4
(The Numerical solution by using Runge - Kutta method)

@aaadl Jal) Slag Ayl 1 daall (e UgS - gl y A8y ke aladiin) g 40l A ) Al

.Matlab z<t_n alasiul,
4— 444,05

g(x) k(x,y) 35 A il cq, b 55l asa 5 ch 3l Jsha Jaal -1
Al jaall 22

odie on 8 dall ol a2 3 ¢ sl Lalss -]
OV sY) aas -3

theta = [0,0.5,0.5,1]

h 3kl Jsk [a, b] 3wl ey uaidl
@ s Al Lladl) axe -5

1
B

(length(nodes) — 1) * 3

Aol Jalaall 5 dyaiall olill 4sie x
x _ediall Aaial) all Jlaa
fori =1 to length(nodes)

1 1
~N (o))

x(i+3x*(i—1)) =nodes(i)

103
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end
x wiall LA el Qi -8
fori=1tolength(nodes) —1
forj=2:4
x(@+3*({(—1+j—1)=x(i+3*{—1))+h=*theta());
end

end

x Jsh outis Jall ad 4xie B(x) g2 -9
p =44y k)l is ) v -10
) REWELIRIVEN RPN i |

fori=1tolengthof x
8() = g(x(®)
m = mod(i, 4)
k = index(i)
if m==2
v=1
elsetif m ==

v=2

104
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elseif m ==
v=3
elseif m==1
v=20
end
if i~=1|i~=2|li~=3|li~=4
forj=1tok -1
fori=1top
ind1l = gind(j == index)
indl = ind1(1)

558 - iy B il -1
@(i) = 0(i) + h * A(4,1) * kernel (x(i),x(indl + (- 1)))

«@(indl + (1 — 1))
end
end
end
if v~=0

for1=1to v (depends on mod)

105



S & il e ALl |yl i gl sas 8 Alalaall (ganall Ja - zadl i il

ind1 = gind(index(i) == index)
indl = ind1(1)

UsS - ) dapa (2 -13

O() = @@) + h* A(v, 1) * kernel (x(i),x(indl + (- 1))) «@(indl + (1 — 1))
end
end

end

Aial all Ll Joants -14
Now let @(x) = Vector length of nodes

fori=1tolength(nodes)
P =0(i+3x@{—-1)
end

da Lyl an WS h = 0.05 35hall Jshy dapmaall g dnaell 3l G (4 - 4) Jsaal
W

106
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(28.4) Udlaall 4 - 4 Zaa ) ) A pladinly (ga0al) 5 pmniall Jall 2(4 - 4) Jyand)

X lail) Jad) (e A Jad) sl
?(x) = xe* Opn(x) E =0 — 04|
0.000000 0.0000000000000000 0.0000895353000000 0.0000895353000000
0.050000 0.0525635548188012 0.0524333664875000 0.0001301883313012
0.100000 0.1105170918075650 0.1103406243000000 0.0001764675075648
0.150000 0.1742751364092420 0.1741493689875000 0.0001257674217424
0.200000 0.2442805516320340 0.2442448793000000 0.0000356723320340
0.250000 0.3210063541719350 0.3210596524875000 0.0000532983155647
0.300000 0.4049576422728010 0.4050734043000000 0.0001157620271991
0.350000 0.4966736420076400 0.4968130689875000 0.0001394269798600
0.400000 0.5967298790565080 0.5968527993000000 0.0001229202434919
0.450000 0.7057404834705760 0.7058139664875000 0.0000734830169240
0.500000 0.8243606353500640 0.8243651603000000 0.0000045249499359
0.550000 0.9532891598270680 0.9532221889875000 0.0000669708395674
0.600000 1.0932712802343100 1.0931480793000000 0.0001232009343051
0.650000 1.2451015388590300 1.2449530764875000 0.0001484623715324
0.700000 1.4096268952293300 1.4094946443000000 0.0001322509293338
0.750000 1.5877500124595100 1.5876774649875000 0.0000725474720060
0.800000 1.7804327427939700 1.7804534393000000 0.0000206965060259
0.850000 1.9886998241370900 1.9888216864875000 0.0001218623504078
0.900000 2.2136428000412600 2.2138285443000000 0.0001857442587450
0.950000 2.4564241763500500 2.4565675689875000 0.0001433926374466
1.000000 2.7182818284590500 2.7181795353000000 0.0001022931590451
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Error
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Terminologies
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Linear independence
Singular
Uniform dependence
Interpolation
Parameter
Orthogonal Projection
Linear system
Expansion
Reduction
Regular Approximate
Analytical Solution
Numerical Solution
Approximate Solution
Continuous solution
Exact Solution

Unique solution
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Infinite solution Sy Jal)

Eigen Values A1l agal)
Eigen Functions A ) sl
One-dimensional 2l g amy
Constant il
Interval terms 5 yidll 3 gaa
Linear EEEN
Mixed Linear adalise dyhas
Algorithm i) )l a
Function unknown APPORIIK
Integral function Alal<s Al
Degree ia
Rank as
Commutative AN 3 )
Power series 53 Al
Taylor series Jshls Al
Adomian Decomposition Method Olasdy dalaill 45 5l
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Variational Iteration Method
Converting VIE To IVP
Improved Euler method
length

Recurrence Relation
Non - linear

Non - Singular

Non - Continuous
Vector Space

linear Space
Completely Space
Standard Space

Inner Product Space
Hilbert Space

Interval

Space

Differentiable
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Continuous Aaia
Convergent i et
Divergent sacliia
Independence Udioa
Dependent A ye
Variable P
System i ghaia
Matrix 38 ghina
Identity matrix 3o ol 48 gina
Diagonal matrix 45 yladl) 48 giina
Determinant A4
Modulus Dl
Fundamental Sequence Al daliiag
Cauchy Sequence 5 sS Aayliia
Hamereshten Equation O yala Aalag
Urysohn Equation O s Aalae
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Homogeneous Equation

Non - Homogeneous Equation
Differential Equation
Wenar-Hoefe Equation
Renoal Equation

Cauchy Equation

Abel Equation

Volterra — Fredholm Equation
Fredholm - Volterra Equation
Initial VValue Problem

Boundary Value Problem
Bounded

Linear Integral Operator
Completely Integral Operator
Completely Continuous Operator
Geometric Series

Cauchy Schfartz Inequality
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dalialas Adales
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Polynomial
Fourier coefficient
Orthogonal set
Integral operator
Kernel

Cauchy Kernel
Logarithm Kernel
Abel Kernel
Karliman Kernel

Symmetric Kernel

Skew Symmetric Kernel

Hilbert — Schmidt Kernel

Difference Kernel
Nodes points
Existence of solution

Uniqueness of solution
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X Xn X2 X1 x
J.f J. J. @(x;) dx, dx, dxs ...dx, = ﬁf{x —y) " lo(y)dy
a a a a a

Gl sl

Y el dadle it Jualaill Yl Cayai (5.1) dgUaiall d8le daia CUEY

B(x)
- f ? (x,y)dy
A(x)
B(x)
= f 20 gy + [(x, BE))|ZE — [B(x, ACO)) A% (1.1)
A(x)
JalSill (i3
L,(x) = J(x — )" 1d(y) dy 2.9
ol @5 > 5e a2 g S
Y i xd dpilly Jualanlly
dl () _ fx N
x - m-D [(=y)"re@)dy
I & 1S A e Jeand 4dle
dl, (x) ‘
dx (=Dl (3.9

O a3 a1 350 (3.1) Wiladll Jualiy
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d2I,,

Tz = = D=2, (4.7
re Jeani Gl el e — 1 ) Jaalail) ) s
d" 1,
g = - D -2 -3).. ==y =m—D
Of ani adle
dnln—( _1)lﬂ 5.1
axt " dx 5.

(e Jeanid (2.1) il iy = 1 g

u@=fmww 6.1

Ol an o) Al (6.1) Aalaal) Jualsy

dl,(x) X .
cllx = P02 = d(x) (7.9
e dani (5.1) (A (7.1) Aalaadl (g0 i il

P - 1100) 8.
T n ld(x (8.9
el a5 Sl (5 skl 3l oY) Jslas

G Janid (8.1) daladl 8 1 = 1 g

h_y 9.1
FriaidC) (9.9

£(9.1) W Jalss
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X

L(x) = f ®(xy) dx;

2]2

dx?

=11d(x)

3 Al A LSy

X

dl

d—; = fq)(xl) dx1
a

x X2

I,(x) =ff d(x,)dx,dx,

e Jeani JalSilly 5 (8.1) dalaall in = 3 aodai o

X X2 X3

I3(x) = 2!ff f D (x,)dx,dx, dx;

a a a

e Jeant COLISH e (8.1) A8kl JalSiy e

x X4 X3 X2
[,(x) = 3!f f f D (x,)dx,dx,dxsdx,
a a a a
x Xn X3 X2
I, = (n—l)!ff f f & (x)dxq ... dx,_,dx, (10.9)
a a a a

(1.5) Austhal) Al e Jans (10.1) 5 (2.1) Aabadl c¥aleal) O (e
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Aglalsil) ol a8 Alulaal Jadl dsilan g 2 g2 g 4k i) @

0(x) = g(x) + 2 f k(o100 dy
il R Ayl sy Jall aga s e o Yl
ol e () A a4l (e ol (S
0y(x) = g(x) (1.9

Do e Juani (2.1) Uslas (3 (1) Aslaadly el okl (b (imy saily
5o sall o B(x) Al 91 Al

b
0:(x) = g(x) + f k()00 (y)dy 2.9
A A e Jean el (e (72 4 1) Faleall 038 1S5 53le s
b
Bre1(0) = g(x) + A f k(x, )0, () dy (3.9

le G AN (e cun il 380 Aliaia 5 gemy (3.0) Aabaall i SH dulee ol 5aY

b
0, () = g(x) + f k(x,y)g () dy 4.2

ol e 58 R 50 e il L
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b b b
0,(x) = g(x) + A j k(x,y)g () dy + 22 f k(x,y) U k(ys)g(s)ds]dy (5.2

e (5.2) Al I

b
k,(x,y) =f k(x,s)k,(s,y)ds (6.

a

B geall o A0l Al e i) muad

b b
0,(0) = g(x) + f kGo ) g(y)dy + 22 f ks Ge, )9 ()dy (7.2
IS e B A5 (e il e ean) gt Jial

b b b
00 = 9@ + 1 [ kG g@dy + 2 [ o »gidy + 2 [ s »)gddy (8.9

a a

153l ky(x,y) 31530 28l
b

ks(x,y) =j k(x,s)k,(s,y)ds (9.9)
a

M\&B\ﬂ\&}@%\wéj\wyu
b

ko (,y) = f k()1 (s, y)ds (10.)

5 el e (1.2) Al Asbaall (1 + 1) &l (g3 s il e Joans leias
b

0a() = g@) + Y A [ k(i 3)g)dy (1.9
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duliia e Jeanin — 00 Lexie el 330 ¢ m ) SEL s K, (0, ) 20 Cua
B gpall Ao s et Al e g

- b
000 = Jim 0,(0) = g@) + 2™ [ k(3 ()dy (12.2)

m=1

KA e (12.0) Asba) LS aus

b
B(x) = g(x) + A j F(x,y: Dg () dy (13.2)
rCoyid) = ) 4™ M (x,5) (14.2)

Aalaall Ja i3 (13.2) Ualeall 5 (Resolvent kernel) Asiall 8) 5l T(x, y; 1) (oonii s
e <8 ] Ledie Jasd o lan Alubodiall oda g ¢ JUal) 8l 48 Hhay (1.2) Addalsal)

Jas

S )8 Aliie Gadai s (11.0) alaall el g senal) I Al Gl da j8 syl
A0 Al Laws

1€, < (1€l (15.<)

2 e ||| pbaills AS se dIs2h 5 Gl

Il = [ e mas] = [[L1eora] (16.)

0S80 380 sl g senall aladl ol L
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b b b
fkm(x,y)g(y)dy Sf Ikm(x.y)lzdyf lg)|*dy (17.<)
3 s g dLilie A0S
b
# = [ lgrdy (18.<)

et (17.2) Aadial) Il [Pk, Cr, y)[2dy JolSill Sle Y1 aall 5o 5 C2 oS3
By pall e

2
< C2 A% (91.<)

b
[ ne 129Gy

I e (10.<) ABall i) o3 Al (ki €2 i) e €2 jpasil) day )]

b b
Ik G )2 < f Ky (x, 5)[2ds f Ik(s,y)|?ds (20.9)
a a

Jhani y Al (20.0) A3l e JalSill ¢ 2l

b
Jo Ve (x, ) 12dy < B*Cpi4 (21.<)
b (b
Bz=j j |k(s,v)|2dsdy (22.<)
a a

AV Ay ) Sl Al e s (21.2) Al
Cm < BPM72CH (23.<)

A A e Juaai (23.0) 5 (19.9) Gl ope
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2
< C2 A2 B2m-2 (24.<)

b
f ko (6, Y)g () dy

el o JB1 e @l (10.00) Wabaadl A o) & sanall aladl aadl Ul
Agnaigl ALl (go g sl S (12.0) Ale3) Aludusiall 3 135 AC, |2 B™
(M (Ul [A] B AxiLal dpndl) aa

B <1 (25.9)
Al o3g) alsinall o i) Cpaniny o 5l Jan
s dall o e s Y15 dall asay e Ll

Jall Al 5 o LG
O ) (), 01 (x) Gl asa 5 s (1.2) Aabaall Ll (Al

B.(x) = g(x) + 2 f k(x, )9, (y)dy
B2(x) = g(x) + 1 [, k(x,7)0,(y)dy
B1(x) — D2 (x) = Bo(x)

Bo(x) = A f: k(x,y)0,(y)dy = i)l S sS Aliia Bkl

10COI2 < 1217 [P 1k, ) 2dy - [2100()|2dy

a4 Al Jalsill

= [ 10000 2dx < 1212 [ [ 1kCx,y)Pdx - dy - [710(x)2dy

= [7100(x)[2dx < [A12B2 [ 10o(x)|2dy




[2100(x0)12dx < 1212B2 [|05(x)|? dx

[1 - [AI2B2] [11@6(x)|2dx < 0
O sl A]-B <1l

Bo(x) =0 VY  x € [a,b]
B1(x) = B,(x) G sllaall ga g

s ds O(x) ~
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Aglalil) ) il g8 Alaleal Jad) Agilan g9 29 9 Ak ) @

B(x) = g(x) + A f k(x,y)0()dy

ssadll e aliiall oy il 45yl aladiuly Jal) asas e oan Yl

Bo(x) = g(x) (1.2)
0 340 3 280 G

0, (x) = Bo(x) + f k(x, )80 (y)dy 2.0
) geall e ()5S Al A 1) e g 3 Ll

0, (x) = Bo(x) + f k(x, )0, (y)dy 3.9

a

B e Joans el e 7 A Jaall salely

B2(0) = Bo(x) + j k() By () dy (4.2)

JSa e ALl sy gem o Jal) 4 adaias L

0() = ) 0,() (5.0
n=0

Al e B() oo Aabaal s b im gai @ll3 BY 5 ¢(2.2) Asbaall Sa Jiss ()
A Y e Jeanid (5.7)

960 + | KGO0y = 0000 + ) k(x3)0,()dy (6.2
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rol Al Kl A8l aladiuy
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Bo() + ) 0,(x) = 0(x) (7.0
n=1

AUEEL Ayl 3@ (x) Ol Bt @) (20) DVl o) ) ang odled laall il
Gl 5 3 paiinn g(x) Of pstrall Gas A 0585 @) () Al sain¥) ) Cua

Ol nd ) aaly (4.z) Wbl aladiily 6 oedee S5 @ (x) = g(x)
1) U plaie lEl () A il s 1 Y 8 _eiue AIX @ ()

M = max|g(x)| 8.2
Aiy;a<x<bu

N = max|k(x,y)| 9.2
O eedll wanig a<x , y<bd&s

|Bo(x)| =M (10.2)
oo Jeant W A ey @l e lEll gy Gukiisa < x < b S
191(0)| < j [k Cx, y)1190(y)|dy < MN(x — a) (11.z)
10 2 AU Al e il e Jidbsg < x < b G
0,01 = [ kG0, Wldy <" x - 0)? (12.9)
DS e > 1 J dean Akl duleall ) S5 3alely

0,01 = [ I NI0aldy < s | - iy = M- (130

oL LS sl Al (K5 e LS aubi il
Z MTAfn(x —a)® = MeN&-@ (14.7)

sl Lndl 0S5 g dlaliiia ol () oS4 il
Jall dglan 5 oo s Lild
(oAbl L Aeald aladily s (2.2) Al s 1(x) 5 B () O o

h(x) = @(x) — (x) (15.2)
) Aelaiad) Alslaall Js 58
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h(x) = f k(x, y)h(y)dy (16.2)

1O Gl B(x) Jab) o L Lad 3l L il shadlly o 585 () = 0 o) LY

R = max|h(x)| (17.2)

e S AN e cu @l Lo diani (15.7) Aaladdl pladilhis g < x < b G
:Jsal)

| (O] < [71kCe, ) 1ho()|dy < NR(x — @) (18.2)

3y sall (o AUl A5 N e il e Jani Jidbisa <6 < b G

lh ()] < [T k(e Y (1dy < 2 (x — a)? (19.2)

Sl El Je doass Gl pall o npdnd Jeall alebisag < x < b Sus

|ha ()] < B2(x — a)" (20.2)

el 2als apmge h(x) N ol N dad Jilbsn=1,2,.. sa < x < b s
(sl diani (20.@) dulaad

rlll_r)g ¥(x —a)"= 0 (21.7)

Sty h(x) =0 ol

B(x) =p(x) (22.7)

s B(x) 2msall Jall of il sy
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(3) galal

Sl ALAL 3 gil) A8y oy ML) aladin) @

Matlab Code for degenerate kernel Method:

%$Degenerate kernel method using taylor series

$the problem is: phi(x)=1+ int(0,1)sin(x+y)dy

clc

clear

format long

a=0;b=pi/2;lambda=4/pi;

$The five terms of taylor series s.t

k(X,Y)=sum(i=1:m)ui (x) *vi (y)

m=5; h=(b-a)/(m-1);

u=zeros (m,m) ;

v= zeros(m,m);
(m,m)

.
4

SWE USE THE TRAPOZOIDAL RULE TO APPROXIMATE THE
INTEGRALS
for i=1:m
G (1)
S (1 )
x (1

g(x(1
X(l);
1)=x
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end
D(1,1)=h/2;
D(m,m)=h/2;
for i=2:m-1
D(i,i)=h;
phi (i)=h;

c(i,lim)=[v(i,J)"*al(3)"'; v(i,]J)"*u2(3)"';
v(i,J)"'"*u3(J)";
v(i,3)"'*ud(J)"'; v(i,J)"*ud(J)"'1];
r(i)=v(i,j)*G(j)";
end

end

e=D*c;
n=r*D;

I=diag(ones(m,1),0);
lhs=T-lambda*e;

z=inv (lhs) *n'

p=G'+lambda* [ul;u2;u3;u4;ud]*z;
[ul;u2;u3;u4d;ud]

k=[s',p]

pe=sin(s) ;
plot(s,p,"*',s,pe, 'r.")

%$legend ('approximate', 'exact', 4)
$THE NESTED FUNCTIONS Which related to g(x) and
ui's (x)

#1 function g=gl (x)

° oo

$g=1;

$#2 function ker=kl (x,vVy)
sker=sin (xty);
$#3function ker=k2 (x,V)
Sker=cos (x+y) ;

@)

$#4function ker=k3(x,vVy)
Sker=(-1/2) *sin (x+y) ;




$#4function ker=k4 (x,V)
$ker=(-1/6) *cos (x+Vy) ;
$#5function ker=k5(x,vy])
$ker=(1/24) *sin (x+y)

p.9 st A8y jlay L) aladii) @

Matlab Code for Nystrom Method:
tic
$The Nystrum method to approximate the Fredholm
integral
equation of the
$second kind.
%$the problem is phi(x)=(-
2/pi) *cos (x)+(4/pi) *int (0,pi/2) cos (x-y)phi (y)dy
clc
clear
format long
a=0 ;
b=pi/2;
lambda=4/pi;
n=70;
h=(b-a) /n;
X (n)=b;
for 1=1:n-1
x(1+1)=a+h*1;
end
G=zeros (1l,n);
S=zeros(l,n);
phi=zeros(l,n);
K=zeros(l,n);
for i=1l:n
G(i)=g(x(1));

for j=1l:n
K(i,J)=k(x(1),x(J));
end
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end
% we approximate the integrais using
Trapezoidrule.
for i=1l:n
D(i,1i)=h;
end
I=diag(ones(n,1),0);
lhs=T-lambda*D*k;
phi=inv (1lhs) *G';
%The exact solution is phi(x)=sin(x).
phie=sin (s) ;
y=[phie'-phi];
plot (S,phi, '*',S,phie, 'r."',S,vy)
plot (S,y)
splot (S, v)
$legend ('approximate', 'exact', 'error',4)
disp(' S phie phi v')
[S',phie',phi, V]
the nested functions are
#1 to approernximate the kernel
unction ker=k(x,vVy)
er=cos (x-vy) ;
#2 to approernximate the know function g(x)
function Ge=g (x)
Ge=(-2/pi) *cos (x) ;
toc

o® o® o o° o° o o°
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Matlab Code for Trapezoidal rule:
tic
clc
clear
format long
$Composite trapezoid rule for Volterra integral
equations of the
$second kind
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%$Take from Atkinson, K.E. "Numerical solution of
ordinary differential

%sequations", Wiley (2009)

%The problem is phi (x)=2%*exp(x)-2-x+int (0, x) (x-
y)phi (y)dy

tic

clc

clear

format long

loop = 30;% This is much more than is usually
needed

b=1;

n=20;

h = b/n;

x = linspace (0,b,n+1);

gcng=@Q (x) (2*exp(x)-2-x) ;

gvec = gcng(x) ;
phivec = zeros(l,n+l) ;
phivec (1) =gvec(l) ;

for i=1:n;
phivec (i+1l) = phivec (i) ;% The initial
estimate for
the iteration.
kvec = gcnk(x(i+1l) ,x(l:i+1))
.*phivec(l:1+1);
for j=1l:1loop
%sapplying trapezoid rule
phivec (i+1l) = gvec(it+l) +
h* (sum (kvec (2:1)
+ (kvec (1)+ kvec (i+1))/2);
kvec (i+1l)= gcnk(x(i+1) ,x(i+1))
.*phivec (1i+1) ;
end
end
phi = phivec;
x = linspace(o,b,n+1);
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phie=x.*exp (x) ;

y=(abs (phie-phi)) ;
m=[x',phi',phie',y"']
plot(x,phi, '*',x,phie, 'r")
grid on

plot (x,vVy)

grid on

toc
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Matlab Code for Runge-Kutta method of order
4
tic
clc
clear
format long
$calculates an approximation to a volterra
Integral Equation of the second kind using the
fourth order Ruge-kutta method
% The problem is phi (x) =2%*exp(x)-2-x+int (0,x) (x-
y)phi (y)dy
$specifying weights:
theta=[0,0.5,0.5,11 ;
A=[0.5,0,0,0;0,0.5,0,0;0,0,1,0; (1/6);
(1/3), (1/3), (1/6)];
a=0;
b=1;
h=.1;
nodes=a:h:b ;
num inter pts=(length(nodes)-1)*3; % number of
intermediate points

x=zeros (1, num inter pts+length(nodes)); %vector
of nodes and intermediate points




[®)

for i=l:ength(nodes) % placing node values into x
X (1+3*(i-1) )=nodes (1) ;
end

FOR i=1l:length(nodes)-1 % placing intermediate
points into x
for j=2:4
x(i+3*(1-1)+j-1)=x(i+3*(1i-1))+h*theta (7);
end

[©)

index=zeros (l,length(x)); % keeps track of which

intermediate points are % associated with whch
node
for i=l:length (nodes) -1
index (1+3* (1i-1) :143*(1-1)+3)=1;
end
index (lendth (index) )=lendth (nodes) ;
phi=zeros(l,length(x)); % vector of solution
values
p=4; % order of method
g=@ (x) (2*exp (x)-2-X) ;
FOR 1=1:1longth (x)
phi (1) =g (x(i));
m=mod (i, 4) ;
k=index (1) ;
IF m==
v=1;
ELSETIF m==
V=2;
ELSETIF m==
v=3;
ELSETIF m==
v=0;
end
if i~=1 i~=2 1i~=3 i~=4
for j=1:k-1
for 1=1:p
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indl= gind(j==index) ;
indl=indl (1);

$applying RK formula
phi (i)=phi (i) +h*A (4, 1)
*genk (x (1),
X (indl+(1-1))) . *phi(indl+(1-1));
end
end
end
if v~=0
for 1=1:v %depends on mod
indl= gind(index (i)==index) ;
indl=indl (1) ;

%applying RK formula
phi (i)=phi (i) +h* A(v,1l) *gcnk(x (i),
X (indl+(1-1))). *phi(indl+(1-1));
end
end
end
sobtaining node wvalues
phi2=zeros (1, length(nodes)):;
for i=1: length (nodes)
phi2 (i)=phi (i+3* (i-1));
end
phie=zeros (1, length(nodes)):;
for i=1: length (nodes)
phie (1)=x(1i+3* (1-1)) .*exp(x(1+3*(1-1)));
end
y=phie-phi2;

m= [nodes', phi2', phie', y']

plot (nodes, phi2, 'bl*', nodes, phie,'r"')
grid on

plot (nodes, vy)
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grid on
toc
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